Skip to main content
Log in

Enhanced physical properties of Bi4Ti3O12 modified Bi0.5(Na0.4K0.1)TiO3 lead-free piezoelectric ceramics using crystallographic orientation techniques

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this study, bismuth titanate (Bi4Ti3O12) templates were synthesized through the molten salt method in Na2CO3 and K2CO3 fluxes. The prepared Bi4Ti3O12 templates possessed plate-like morphologies with lengths of 5–20 μm and widths of 0.5–1 μm. They can be used to improve the electrical properties of Bi0.5 (Na0.4K0.1)TiO3 lead-free ceramics by employing template grain growth method at different sintering temperatures (950–1150 °C). The effect of sintering temperature on the physical properties of the 0.9[Bi0.5(Na0.4K0.1)TiO3]-0.1[Bi4Ti3O12] (BNKT-BT) ceramics was investigated and it was found that the degree of orientation of the synthesized ceramics increased along with the sintering temperature, and the highest values were achieved at 1050 οC. However, at 1150 οC, the values for both ceramics started to decrease due to the formation of the Bi2Ti2O7 pyrochlore phase. The ceramics sintered at an optimum temperature of 1050 οC exhibited the best physical properties such as density (ρ), 6.0 g cm−3 (relative density 99.8% of the theoretical value); remanent polarization (Pr), 15.5 μC cm−2; coercive field (Ec), 24.5 Kv/cm; and highest dielectric constant (εmax), 6080.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784(5), 1303–1310 (2019)

    CAS  Google Scholar 

  2. P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M.A. Mawat, W. Ma, K. Liu, J. Xiao, H. Zhang, J. Eur. Ceram. Soc. 38(13), 4404–4413 (2018)

    CAS  Google Scholar 

  3. P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109(11), 1071–1076 (2018)

    CAS  Google Scholar 

  4. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30(8), 1705171 (2018)

    Google Scholar 

  5. K. Shibata, R. Wang, T. Tou, J. Koruza, MRS Bull. 43(8), 612–616 (2018)

    CAS  Google Scholar 

  6. D.A. Tuan, L.D. Vuong, V.T. Tung, N.N. Tuan, N.T. Duong, J. Ceram. Process. Res. 19(1), 32–36 (2018)

    Google Scholar 

  7. D.A. Tuan, V.T. Tung, L.D. Vuong, N.H. Yen, L.T.U. Tu, J. Electron. Mater. 47(10), 6297–6301 (2018)

    CAS  Google Scholar 

  8. X. Wang, H. Gao, X. Hao, X. Lou, Ceram. Int. 45(4), 4274–4282 (2019)

    CAS  Google Scholar 

  9. J. Wang, Y. Li, N. Sun, J. Du, Q. Zhang, X. Hao, J. Eur. Ceram. Soc. 39(2), 255–263 (2019)

    CAS  Google Scholar 

  10. P. Fan, Y. Zhang, S.-T. Zhang, B. Xie, Y. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, H. Zhang, J. Mater. (2019)

  11. L.D. Vuong, N. Truong-Tho, Journal of Elec Materi 46(11), 6395–6402 (2017)

    CAS  Google Scholar 

  12. L.D. Vuong, N.T. Tho, Int. J. Mater. Res. 108(3), 222–227 (2017)

    Google Scholar 

  13. H.-C. Thong, C. Zhao, Z.-X. Zhu, X. Chen, J.-F. Li, K. Wang, Acta Mater. 166, 551–559 (2019)

    CAS  Google Scholar 

  14. G.L. Messing, S. Trolier-McKinstry, E. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. Rehrig, K. Eitel, Critical Reviews in Solid State Materials Sciences Applications 29(2), 45–96 (2004)

    CAS  Google Scholar 

  15. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu and X. J. A. M. Zhang, 30 (8), 1705171 (2018)

  16. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)

    Google Scholar 

  17. X. Liu, X. Tan, Advanced materials28(3), 574–578 (2016)

    CAS  Google Scholar 

  18. H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35(9), 2501–2512 (2015)

    CAS  Google Scholar 

  19. K. Wang, B. Malič, J. Wu, MRS Bull. 43(8), 607–611 (2018)

    CAS  Google Scholar 

  20. H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Mater. Today (2019)

  21. F.J.J.O.I. Lotgering, N. Chemistry 9(2), 113–123 (1959)

    CAS  Google Scholar 

  22. C.B. Sawyer, C. Tower, Physical review35(3), 269 (1930)

    CAS  Google Scholar 

  23. L.D. Vuong, P.D. Gio, N.D.V. Quang, T. Dai Hieu, T.P. Nam, J. Electron. Mater. 47(10), 5944–5951 (2018)

    CAS  Google Scholar 

  24. S.H. Ng, J. Xue, J. Wang, J. Am. Ceram. Soc. 85(11), 2660–2665 (2002)

    CAS  Google Scholar 

  25. R. Furushima, S. Tanaka, Z. Kato, K. Uematsu, J. Ceram. Soc. Jpn. 118(1382), 921–926 (2010)

    CAS  Google Scholar 

  26. B.D. Stojanovic, C. Paiva-Santos, C. Jovalekic, A. Simoes, Z. Lazarevic, J.A. Varela, Materials chemistry physics96(2–3), 471–476 (2006)

    CAS  Google Scholar 

  27. W. McLune, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989)

    Google Scholar 

  28. Z. Lazarević, B. Stojanović, C. Paiva-Santos, N. Romčević, Ferroelectrics 368(1), 154–162 (2008)

    Google Scholar 

  29. S. Naz, S. Durrani, A. Qureshi, M. Hussain and N. Hussain, Journal of thermal analysis and alorimetry114 (2), 719–723 (2013)

    Google Scholar 

  30. W. McLune, Swarthmore (PA, Card, 1989)

    Google Scholar 

  31. M. Ranieri, E. Aguiar, M. Cilense, A. Simões and J. A. J. C. I. Varela, 39 (7), 7291–7296 (2013)

  32. E. C. Aguiar, A. Z. Simões, F. Moura, M. Cilense, E. Longo and J. A. Varela, Processing Application of Ceramics, 1–11 (2011)

    Google Scholar 

  33. W. Liu, X. Wang, D. Tian, C. Xiao, Z. Wei, S. Chen, Materials Sciences Applications 1(02), 91 (2010)

    Google Scholar 

  34. Z. Zhao, X. Li, H. Ji and M. J. I. F. Deng, 154 (1), 154–158 (2014)

  35. T. Kimura, T. Takahashi, T. Tani, Y. Saito, Ceram. Int. 30(7), 1161–1167 (2004)

    CAS  Google Scholar 

  36. R.P. Gonçalves, F.F. da Silva, P.H. Picciani, M.L. Dias, Materials Sciences Applications 6(02), 189 (2015)

    Google Scholar 

  37. M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O. Rojas, Biomacromolecules 11(3), 674–681 (2010)

    CAS  Google Scholar 

  38. A. Rianjanu, A. Kusumaatmaja, E.A. Suyono, K. Triyana, Heliyon 4(4), e00592 (2018)

    Google Scholar 

  39. L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458(1–2), 504–508 (2008)

    CAS  Google Scholar 

  40. M.S. Alkathy, A. Hezam, K. Manoja, J. Wang, C. Cheng, K. Byrappa, K.J. Raju, J. Alloys Compd. 762, 49–61 (2018)

    CAS  Google Scholar 

  41. H. Naceur, A. Megriche, M. El Maaoui, Journal of Advanced Ceramics 3(1), 17–30 (2014)

    CAS  Google Scholar 

  42. Y. Chang, S. Lee, S. Poterala, C.A. Randall, G.L. Messing, Journal of Materials Research26(24), 3044–3050 (2011)

    CAS  Google Scholar 

  43. D.-d. Wei, Q.-b. Yuan, G.-q. Zhang, H. Wang, J. Mater. Res. 30(14), 2144–2150 (2015)

    CAS  Google Scholar 

  44. T.G. Lee, H.J. Lee, S.J. Park, T.H. Lee, D.H. Kim, C.H. Hong, H. Xu, C.Y. Kang, S. Nahm, Journal of the American Ceramic Society100(12), 5681–5692 (2017)

    CAS  Google Scholar 

  45. Z.H. Zhao, M.Y. Ye, H.M. Ji, X.L. Li, X. Zhang, Y. Dai, Mater. Des. 37, 184–191 (2018)

    Google Scholar 

  46. N. D. Quan, V. N. Hung and D. D. J. J. O. E. M. Dung, 46 (10), 5814–5819 (2017)

  47. H. Dong, X. Zheng, W. Li, Y. Gong, J. Peng, Z. Zhu, J. Appl. Phys. 110(12), 124109 (2011)

    Google Scholar 

  48. Y.F. Kargin, S. Ivicheva, V. Volkov, Russ. J. Inorg. Chem. 60(5), 619–625 (2015)

    CAS  Google Scholar 

  49. K. Fuse and T. J. J. O. T. A. C. S. Kimura, 89 (6), 1957–1964 (2006)

  50. X. Jing, Y. Li, Q. Yang, J. Zeng, Q. Yin, Ceramics international30(7), 1889–1893 (2004)

    CAS  Google Scholar 

  51. M. Wu, Y. Li, D. Wang, J. Zeng, Q. Yin, Journal of electroceramics22(1–3), 131–135 (2009)

    CAS  Google Scholar 

  52. J. Zhao, F. Wang, W. Li, H. Li, D. Zhou, S. Gong, Y. Hu, Q. Fu, J. Appl. Phys. 108(7), 073535 (2010)

    Google Scholar 

  53. E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, J.L. Jones, Phys. Rev. B 85(2), 024121 (2012)

    Google Scholar 

  54. T. Wang, X.-m. Chen, Y.-z. Qiu, Ferroelectrics 510(1), 161–169 (2017)

    CAS  Google Scholar 

  55. S. Pattipaka, M. Peddigari, P. Dobbidi, Ceram. Int. 43, S151–S157 (2017)

    CAS  Google Scholar 

  56. C. Xu, D. Lin, K. Kwok, Solid state sciences10(7), 934–940 (2008)

    CAS  Google Scholar 

  57. A. Hussain, C. Ahn, A. Ullah, J. Lee, I. Kim, Ferroelectrics 404(1), 157–161 (2010)

    CAS  Google Scholar 

  58. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Japanese journal of applied physics45(5S), 4493 (2006)

    CAS  Google Scholar 

  59. L.D. Vuong, P.D. Gio, N.T. Tho, T.V. Chuong, Indian Journal of Engineering & Materials Sciences 20, 555–560 (2013)

    CAS  Google Scholar 

  60. A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)

    Google Scholar 

  61. L.-M. Chang, Y.-D. Hou, M.-K. Zhu, H. Yan, J. Appl. Phys. 101(3), 034101 (2007)

    Google Scholar 

  62. N. Dong, X. Gao, F. Xia, H. Liu, H. Hao, S. Zhang, Crystals 9(4), 206 (2019)

    CAS  Google Scholar 

  63. M. Wu, Y. Wang, D. Wang, Y. Li, IEEE transactions on ultrasonics, ferroelectrics, frequency control58(10), 2036–2041 (2011)

    Google Scholar 

  64. R. Sumang, W. Buasri, N. Kumar, T. Bongkarn, Integr. Ferroelectr. 187(1), 181–193 (2018)

    CAS  Google Scholar 

  65. T.A. Duong, H.-S. Han, Y.-H. Hong, Y.-S. Park, H.T.K. Nguyen, T.H. Dinh, J.-S. Lee, J. Electroceram. 41(1–4), 73–79 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2017.308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Vuong Le.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, D.V., Dao, A.Q. Enhanced physical properties of Bi4Ti3O12 modified Bi0.5(Na0.4K0.1)TiO3 lead-free piezoelectric ceramics using crystallographic orientation techniques. J Electroceram 44, 68–77 (2020). https://doi.org/10.1007/s10832-020-00200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00200-z

Keywords

Navigation