Skip to main content

Advertisement

Log in

Nano-SiO2@PMMA-doped composite polymer PVDF-HFP/PMMA/PEO electrolyte for lithium metal batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer electrolytes have attracted widespread attention owing to their low cost and excellent processability. However, polymer electrolytes have yet been widely applied in commercial batteries due to their own drawbacks, such as weak mechanical properties and lower ionic conductivity. In this paper, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was blended with polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to build a novel polymer matrix, and SiO2@PMMA was doped into blended polymer matrix to form a composite polymer electrolyte named CPE-(SiO2@PMMA). The CPE-(SiO2@PMMA) performs superior electrochemical performance, such as a favorable electrochemical stability window (4.7 V vs Li/Li+), decent ionic conductivity (8.54 × 10–5 S cm−1 at 60 ℃), and excellent interface stability. The lithium metal battery LiNi0.8Co0.1Mn0.1O2/CPE/Li was fabricated to build a high specific energy system, which performs excellent cycling and C-rate performance compared to others polymer electrolytes. Capacity retention of LiNi0.8Co0.1Mn0.1O2/Li cell with CPE-(SiO2@PMMA) achieves 81.6% after 100 cycles, while CPE was broken with 100 cycles unfinished. All of the above favorable properties proved that PVDF-HFP/PMMA/PEO polymer matrix with SiO2@PMMA doped is a promising electrolyte candidate for flexible lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)

    CAS  Google Scholar 

  2. J.B. Goodenough, Energy storage materials: a perspective. Energy Storage Mater. 1, 158–161 (2015)

    Google Scholar 

  3. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    CAS  Google Scholar 

  4. W.K. Shin, J. Cho, A.G. Kannan et al., Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 6, 26332 (2016)

    CAS  Google Scholar 

  5. P. Wang, J. Chai, Z. Zhang et al., An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J. Mater. Chem. A 7, 5295–5304 (2019)

    CAS  Google Scholar 

  6. A. Mauger, M. Armand, C.M. Julien et al., Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 353, 333–342 (2017)

    CAS  Google Scholar 

  7. Q. Wang, H. Zhang, Z. Cui et al., Siloxane-based polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 466–490 (2019)

    Google Scholar 

  8. L. Fan, S. Wei, S. Li et al., Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8(11), 1702657 (2018)

    Google Scholar 

  9. J.G. Kim, B. Son, S. Mukherjee et al., A review of lithium and non-lithium based solid state batteries. J. Power Sources 282, 299–322 (2015)

    CAS  Google Scholar 

  10. D. Li, L. Chen, T. Wang et al., 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10(8), 7069–7078 (2018)

    CAS  Google Scholar 

  11. M. Faridi, L. Naji, S. Kazemifard et al., Electrochemical investigation of gel polymer electrolytes based on poly(methyl methacrylate) and dimethylacetamide for application in Li-ion batteries. Chem. Papers 72, 2289–2300 (2018)

    CAS  Google Scholar 

  12. T. Ma, Z. Cui, Y. Wu et al., Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I—Effect of PMMA on the membrane formation process and the properties. J. Membr. Sci. 444(10), 213–222 (2013)

    CAS  Google Scholar 

  13. H.P. Zhang, P. Zhang, Z.H. Li et al., A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem. Commun. 9(7), 1700–1703 (2007)

    CAS  Google Scholar 

  14. H. Zhang, J. Zhang, J. Ma et al., Polymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev. 2, 128–148 (2019)

    CAS  Google Scholar 

  15. J.I. Kim, Y. Choi, K.Y. Chung et al., A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27, 1701768 (2017)

    Google Scholar 

  16. C.H. Tsao, P.L. Kuo, Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J. Membr. Sci. 489, 36–42 (2015)

    CAS  Google Scholar 

  17. N.H. Idris, M.M. Rahman, J.Z. Wang et al., Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 201, 294–300 (2012)

    CAS  Google Scholar 

  18. Q. Xiao, X. Wang, W. Li et al., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J. Membr. Sci. 334(1–2), 117–122 (2009)

    CAS  Google Scholar 

  19. M.M. Rao, J.S. Liu, W.S. Li et al., Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate). J. Power Sources 189(1), 711–715 (2009)

    CAS  Google Scholar 

  20. Y.H. Liao, X.P. Li, C.H. Fu et al., Performance improvement of polyethylene-supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3. J. Power Sources 196(16), 6723–6728 (2011)

    CAS  Google Scholar 

  21. S.J. Tan, X.X. Zeng, Q. Ma et al., Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1(2), 113–138 (2018)

    CAS  Google Scholar 

  22. T. Sakakibara, M. Kitamura, T. Honma et al., Cross-linked polymer electrolyte and its application to lithium polymer battery. Electrochim. Acta 296, 1018–1026 (2019)

    CAS  Google Scholar 

  23. H. Huang, D. Fei, Z. Hai et al., Nano-SiO2 embedded poly (propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries. J. Mater. Chem. A 6, 9539–9549 (2018)

    CAS  Google Scholar 

  24. S. Liu, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, J. Yang, Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethyleneoxide)–Li(CF3SO2)2N/Li. J. Power Sources 195, 6847–6853 (2010)

    CAS  Google Scholar 

  25. X. He, Q. Shi, X. Zhou et al., In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51(6), 1069–1075 (2005)

    CAS  Google Scholar 

  26. N. Wu, Q. Cao, X. Wang et al., In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. J. Power Sources 196(22), 9751–9756 (2011)

    CAS  Google Scholar 

  27. J.W. Zha, N. Huang, K.Q. He et al., Electrospun poly(ethylene oxide) nanofibrous composites with enhanced ionic conductivity as flexible solid polymer electrolytes. High Volt.2(1), 25–31 (2017)

    Google Scholar 

  28. Z.H. Li, H.P. Zhang, P. Zhang et al., Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 322(2), 416–422 (2008)

    CAS  Google Scholar 

  29. Y. Chen, H. Chen, F. Lin et al., Preparation and conductivity of the composite polymer electrolytes based on poly[bis(methoxyethoxyethoxy)-phosphazene], LiClO4 and α-Al2O3. Solid State Ion. 156(3), 383–392 (2003)

    Google Scholar 

  30. K.M. Kim, J.M. Ko, N.G. Park et al., Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with rutile TiO2 nanoparticles. Solid State Ion. Diffus. React. 161(1–2), 121–131 (2003)

    CAS  Google Scholar 

  31. Z. Wang, C. Miao, W. Xiao et al., Effect of different contents of organic-inorganic hybrid particles poly(methyl methacrylate) ZrO2 on the properties of poly(vinylidenefluoride-hexafluoroprolene)-based composite gel polymer electrolytes. Electrochim. Acta 272, 127–134 (2018)

    CAS  Google Scholar 

  32. J. Cao, L. Wang, X. He et al., In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1(19), 5955 (2013)

    CAS  Google Scholar 

  33. X. Zuo, J. Wu, X. Ma et al., A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nanoSiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance. J. Power Sources 407, 44–52 (2018)

    CAS  Google Scholar 

  34. L.P. Wang, T.S. Wang, Y.X. Yin et al., Exploiting lithium-depleted cathode materials for solid-state li metal batteries. Adv. Energy Mater. 9, 1901335 (2019)

    Google Scholar 

  35. G.H. Bogush, M.A. Tracy, C.F.Z. Iv, Preparation of monodisperse silica particles: control of size and mass fraction. J. Non-Cryst. Solids 104(1), 95–106 (1988)

    CAS  Google Scholar 

  36. W. Liu, W. Li, D. Zhuo et al., Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Central Sci. 3(2), 135 (2017)

    CAS  Google Scholar 

  37. Y. Hu, T. Zhang, J. Ge et al., Superparamagnetic composite colloids with anisotropic structures. J. Am. Chem. Soc. 129(29), 8974–8975 (2007)

    Google Scholar 

  38. Y. Zhu, J. Cao, H. Chen et al., High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2019)

    CAS  Google Scholar 

  39. C. Ton-That, A.G. Shard, D.O.H. Teare et al., XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer 42(3), 1121–1129 (2001)

    CAS  Google Scholar 

  40. D. Lin, W. Liu, Y. Liu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16(1), 459–465 (2016)

    CAS  Google Scholar 

  41. L. Long, S. Wang, M. Xiao et al., Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016)

    CAS  Google Scholar 

  42. H. Huang, F. Ding, H. Zhong et al., Nano-SiO2 embedded poly (propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries. J. Mater. Chem. A 10(6), 9539–9549 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, R., Zhou, H. et al. Nano-SiO2@PMMA-doped composite polymer PVDF-HFP/PMMA/PEO electrolyte for lithium metal batteries. J Mater Sci: Mater Electron 31, 2708–2719 (2020). https://doi.org/10.1007/s10854-019-02811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02811-x

Navigation