Skip to main content
Log in

A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensing platform based upon screen-printing electrodes (SPEs) modified with nanostructured lanthanide metal oxides facilitate the detection of the widely misused drugs acetaminophen (ACP) and tramadol (TRA). Among the metal oxides examined, Yb2O3 nanoplates (NPs) were found to give rise to an optimal electrochemical response. The electroanalysis of ACP and TRA individually, and within mixtures, was performed using cyclic and differential pulse voltammetry. The ACP and TRA exhibited non-overlapping voltammetric signals at voltages of +0.30 and + 0.67 V (vs. Ag/AgCl; pH 9) using Yb2O3-SPEs. Pharmaceutical dosage forms and spiked human fluids were analyzed in wide linear concentration ranges of 0.25–654 and 0.50–115 μmol.L−1 with limits of detection (LOD) of 55 and 87 nmol.L−1 for ACP and TRA, respectively. The Yb2O3-SPEs offer a sensitive and chemically stable enzyme-free electrochemical platform for ACP and TRA assay.

Schematic presentation of one-shot electrochemical analysis of misused drugs, tramadol (TRA) and acetaminophen (ACP) by utilizing ytterbium oxide nanoplates modified screen-printed electrodes (Yb2O3-SPEs). The Yb2O3-SPEs showed interesting responses for ACP and TRA within pharmaceutical formulations and human fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Department of Justice, Drug Enforcement Administration (2014) Schedules of controlled substances: placement of tramadol into schedule IV. Fed Regist 79(127):37623–37630

    Google Scholar 

  2. Lewis KS, Han NH (1997) Tramadol: a new centrally acting analgesic. Am J Health Syst Pharm 54:643–652

    Article  CAS  Google Scholar 

  3. Scott LJ, Perry CM (2000) Tramadol: a review of its use in perioperative pain. Drugs 60(1):139–176

    Article  CAS  Google Scholar 

  4. Kelly KR, Pypendop BH, Christe KL (2015) Pharmacokinetics of tramadol following intravenous and oral administration in male rhesus macaques (Macaca Mulatta). J Vet Pharmacol Ther 38(4):375–382

    Article  CAS  Google Scholar 

  5. Karen M, Lesley JS (2001) Tramadol/paracetamol. Drugs 63(11):1079–1086

    Google Scholar 

  6. Li M, Jing LH (2007) Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  7. Belal T, Awad T, Clark CR (2009) Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC-MS. J Chromatogr Sci 47:849–854

    Article  CAS  Google Scholar 

  8. Zhu T, Ding L, Guo X, Yang L, Wen A (2007) Simultaneous determination of tramadol and acetaminophen in human plasma by LC–ESI–MS. Chromatographia 66:171–178

    Article  CAS  Google Scholar 

  9. Sha YF, Shen S, Duan GL (2005) Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography–mass spectrometry. J Pharm Biomed Anal 37:143–147

    Article  CAS  Google Scholar 

  10. Li J, Ju H (2006) Simultaneous determination of ethamsylate, tramadol, and lidocaine in human urine by capillary electrophoresis with electrochemiluminescence detection. Electrophoresis 27:3467–3474

    Article  CAS  Google Scholar 

  11. Kolivoška V, Gál M, Lachmanová Š, Valášek M, Hromadová M, Pospíšil L (2011) Spectroelectrochemical determination of the electron consumption. Anal Chim Acta 697:23–26

    Article  Google Scholar 

  12. Mohamed MA, Atty SA, Salama NN, Banks CE (2017) Highly selective sensing platform utilizing graphene oxide and multiwalled carbon nanotubes for the sensitive determination of tramadol in the presence of co-formulated drugs. Electroanalysis 29:1038–1048

    Article  CAS  Google Scholar 

  13. Ruiyi L, Haiyan Z, Zaijun L, Junkang L (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185(2):145

    Article  Google Scholar 

  14. Song X, Fu J, Wang J, Li C, Liu Z (2018) Simultaneous voltammetric determination of acetaminophen and dopamine using a glassy carbon electrode modified with copper porphyrin-exfoliated graphene. Microchim Acta 185(8):369

    Article  Google Scholar 

  15. Tavakkoli N, Soltani N, Shahdost-fard F, Ramezani M, Salavati H, Jalali MR (2018) Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles. Microchim Acta 185(10):479

    Article  Google Scholar 

  16. Garrido EMPJ, Garrido JMPJ, Borges F, Delerue-Matos C (2003) Development of electrochemical methods for determination of tramadol—analytical application to pharmaceutical dosage forms. J Pharm Biomed Anal 32:975–981

    Article  CAS  Google Scholar 

  17. Sanghavi BJ, Srivastava AK (2011) Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal Chim Acta 706:246–254

    Article  CAS  Google Scholar 

  18. Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, Dinarvand R (2010) Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim Acta 55:2752–2759

    Article  CAS  Google Scholar 

  19. Norouzi P, Dinarvand R, Ganjali MR, Meibodi ASE (2007) Application of adsorptive stripping voltammetry for the nano-level detection of tramadol in biological fluids and tablets using fast fourier transform continuous cyclic voltammetry at an Au microelectrode in a flowing system. Anal Lett 40:2252–2270

    Article  CAS  Google Scholar 

  20. Babaei A, Taheri AR, Afrasiabi M (2011) A multi-walled carbon nanotube-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of paracetamol and tramadol in pharmaceutical preparations and biological fluids. J Braz Chem Soc 22(8):1549–1558

    Article  CAS  Google Scholar 

  21. Chitravathi S, Munichandraiah N (2016) Voltammetric determination of paracetamol, tramadol and caffeine using poly(Nile blue) modified glassy carbon electrode. J Electroanal Chem 764:93–103

    Article  CAS  Google Scholar 

  22. Mahmoud BG, Khairy M, Rashwan FA, Foster CW, Banks CE (2016) Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. RSC Adv 6:14474–14482

    Article  CAS  Google Scholar 

  23. Shestakov MV, Tikhomirov VK, Kirilenko D, Kuznetsov AS, Chibotaru LF, Baranov AN, Van Tendeloo G, Moshchalkov VV (2011) Quantum cutting in Li (770 nm) and Yb (1000 nm) Co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Opt Express 19(17):15955–15964

    Article  CAS  Google Scholar 

  24. Fricker SP (2006) The therapeutic application of lanthanides. Chem Soc Rev 35:524–533

    Article  CAS  Google Scholar 

  25. Ganjali MR, Memari Z, Faridbod F, Dinarvand R, Norouzi P (2008) Sm3+ potentiometric membrane sensor as a probe for determination of some pharmaceutics. Electroanalysis 20(24):2663–2670

    Article  CAS  Google Scholar 

  26. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  CAS  Google Scholar 

  27. Khairy M, Mahmoud BG, Banks CE (2018) Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. Sensors Actuators B Chem 259:142–154

    Article  CAS  Google Scholar 

  28. Ensafi AA, Noroozi R, Zandi-Atashbar N, Rezaei B (2017) Cerium (IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sensors Actuators B 245:980–987

    Article  CAS  Google Scholar 

  29. Neal CJ, Gupta A, Barkam S, Saraf S, Das S, Cho HJ, Seal S (2017) Picomolar detection of hydrogen peroxide using enzyme-free inorganic nanoparticle-based sensor. Sci Rep 7:1324

    Article  Google Scholar 

  30. Jia G, You H, Yang M, Zhang L, Zhang H (2009) Uniform lanthanide orthoborates LnBO3 (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates: general synthesis and luminescence properties. J Phys Chem C 113:16638–16644

    Article  CAS  Google Scholar 

  31. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta 618:54–60

    Article  CAS  Google Scholar 

  32. Mahmoud BG, Khairy M, Rashwan FA, Banks CE (2017) Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal Chem 89(3):2170–2178

    Article  CAS  Google Scholar 

  33. Fan Y, Liu J-H, Lu HT, Zhang Q (2011) Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids Surf B 85:289–292

    Article  CAS  Google Scholar 

  34. Dong Y, Zhou M, Zhang L (2019) 3D multiporous Co, N co-doped MoO2/MoC nanorods hybrids as improved electrode materials for highly sensitive simultaneous determination of acetaminophen and 4-aminophenol. Electrochim Acta 302:56–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from a British Council Institutional Link grant and Science and Technology Development Fund in Egypt (STDF) (No. 172726574, Project ID 18435) for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khairy.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairy, M., Banks, C.E. A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. Microchim Acta 187, 126 (2020). https://doi.org/10.1007/s00604-020-4118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4118-x

Keywords

Navigation