Skip to main content
Log in

Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although graphene aerogels (GA) have been attracted great attention, the easy-operation and large-scale production of GA are still challenges. Further, most GA have a monolith-like appearance, limiting their application-specific needs. Herein, we highlight graphene aerogel spheres with controllable hollow structures (HGAS) that are delicately designed and manufactured via coaxial electrospinning coupled with freeze-drying and calcination. The HGAS exhibit a spherical configuration at the macroscale, while the construction elements of graphene on the microscale showing an interconnected radial microchannel structure. Further, ball-in-ball graphene aerogel spheres (BGAS) are obtained by reference to the triaxial electrospinning technology. The as-prepared spheres possess the controllable integrated conductive networks, leading to the effective dielectric loss and impedance matching, thus bringing on high-performance microwave absorption. The as-obtained HGAS shows a minimum reflection loss of -52.7 dB, and a broad effective absorption bandwidth (fE) of 7.0 GHz with thickness of 2.3 mm. Further, the fE reaches 9.3 GHz for BGAS with thickness of 3.4 mm. Aforementioned superior microwave absorption of HGAS and BGAS confirms combination of multiaxial electrospinning and freeze-drying on the multiscale is an effective strategy for scalable fabrication of advanced microwave absorbing functional graphene aerogel spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun.2015, 6, 6628.

    Article  CAS  Google Scholar 

  2. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater.2014, 26, 3484–3489.

    Article  CAS  Google Scholar 

  3. Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/ silica composites. Carbon2010, 48, 788–796.

    Article  CAS  Google Scholar 

  4. Guo, Y. R; Li, J. Y; Meng, F. B.; Wei, W.; Yang, Q.; Li, Y.; Wang, H. G; Peng, F. X.; Zhou, Z. W. Hybridization-induced polarization of graphene sheets by intercalation-polymerized polyaniline towards high performance of microwave absorption. ACS Appl. Mater. Interfaces2019, 77, 17100–17107.

    Article  Google Scholar 

  5. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater.2013, 25, 1296–1300.

    Article  CAS  Google Scholar 

  6. Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. R; Shi, Q.; Xiao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon2017, 124, 506–514.

    Article  CAS  Google Scholar 

  7. Meng, F. B.; Wang, H. G; Wei, W.; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nana Res.2018, 77, 2847–2861.

    Article  Google Scholar 

  8. Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutierrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev.2013, 42, 794–830.

    Article  CAS  Google Scholar 

  9. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun.2015, 6, 6962.

    Article  CAS  Google Scholar 

  10. Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater.2018, 28, 1707024.

    Article  Google Scholar 

  11. Wang, C. H; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nana2018, 12, 5816–5825.

    Article  CAS  Google Scholar 

  12. Fang, Z. G; Cao, X. M.; Li, C.S.; Zhang, H. T; Zhang, J. S.; Zhang, H. Y. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon2006, 44, 3368–3370.

    Article  CAS  Google Scholar 

  13. Bao, C. L.; Bi, S. G.; Zhang, H.; Zhao, J. L.; Wang, P. F; Yue, C. Y.; Yang, J. L. Graphene oxide beads for fast clean-up of hazardous chemicals. J. Mater. Chem. A2016, 4, 9437–9446.

    Article  CAS  Google Scholar 

  14. Zhang, Q. Q.; Zhang, F.; Xu, X.; Zhou, C.; Lin, D. Three-dimensional printing hollow polymer template-mediated graphene lattices with tailorable architectures and multifunctional properties. ACS Nana2018, 12, 1096–1106.

    Article  CAS  Google Scholar 

  15. Zheng, Q. F; Kvit, A.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. A freestanding cellulose nanofibril-reduced graphene oxide-nolybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J. Mater. Chem. A2017, 5, 12528–12541.

    Article  CAS  Google Scholar 

  16. Xi, J. B.; Li, Y. L.; Zhou, E. Z.; Liu, Y. J.; Gao, W. W.; Guo, Y.; Ying, J.; Chen, Z. C.; Chen, G. G.; Gao, C. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon2018, 135, 44–51.

    Article  CAS  Google Scholar 

  17. Zhao, C. Z.; Fan, J.; Chen, D.; Xu, Y.; Wang, T. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nana Res.2016, 9, 866–875.

    Article  CAS  Google Scholar 

  18. Bi, H. C.; Yin, K. B.; Xie, X.; Zhou, Y. L.; Wan, N.; Xu, F.; Banhart, F.; Sun, L. T; Ruoff, R. S. Low temperature casting of graphene with high compressive strength. Adv. Mater.2012, 24, 5124–5129.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater.2015, 27, 2049–2053.

    Article  CAS  Google Scholar 

  20. Xu, X.; Li, H.; Zhang, Q. Q.; Hu, H.; Zhao, Z. B.; Li, J. H; Li, J. Y.; Qiao, Y.; Gogotsi, Y. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano2015, 9, 3969–3977.

    Article  CAS  Google Scholar 

  21. Du, X. S.; Liu, H. Y.; Mai, Y. W. Ultrafast synthesis of multifunctional N-doped graphene foam in an ethanol flame. ACS Nana2016, 10, 453–462.

    Article  CAS  Google Scholar 

  22. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, P. K.; Aksay I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nana Lett.2008, 8, 36–41.

    Article  CAS  Google Scholar 

  23. Liao, S. C; Zhai, T. L.; Xia, H. S. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J. Mater. Chem. A2016, 4, 1068–1077.

    Article  CAS  Google Scholar 

  24. Meng, F. B.; Wang, H. G.; Huang F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: Areview and prospective. Compos. Part B Eng. 2018, 137, 260–277.

    Article  CAS  Google Scholar 

  25. Liu, X. R; Nie, X. Y.; Yu, R. H.; Feng, H. B. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 2018, 334, 153–161.

    Article  CAS  Google Scholar 

  26. Wang, K. R.; Chen, Y. J.; Tian, R.; Li, H.; Zhou, Y.; Duan, H. N.; Liu, H. Z. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces2018, 10, 11333–11342.

    Article  CAS  Google Scholar 

  27. Wang, H. G; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces2019, 11, 12142–12153.

    Article  CAS  Google Scholar 

  28. Zhang, W. L.; Jiang, D.; Wang, X. X.; Hao, B. N.; Liu, Y. D.; Liu, J. Q. Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J. Phys. Chem. C2017, 727, 4989–4998.

    Article  Google Scholar 

  29. Meng, F. B.; Liu, X. B. Hyperbranched copper phthalocyanine decorated Fe3O4 microspheres with extraordinary microwave absorption properties. RSC Adv.2015, 5, 7018–7022.

    Article  CAS  Google Scholar 

  30. Wei, S.; Wang, X. X.; Zhang, B. Q.; Yu, M. X.; Zheng, Y. W.; Wang, Y.; Liu, J. Q. Preparation of hierarchical core-shell C@NiCo204@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 2017, 314, 477–487.

    Article  CAS  Google Scholar 

  31. Zhang, X. J.; Zhu, J. Q.; Yin, P. G; Guo, A. P.; Huang, A. P.; Guo, L.; Wang, G. S. Tunable high-performance microwave absorption of Coi1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funt. Mater.2018, 28, 1800761.

    Article  Google Scholar 

  32. Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C; Yang, H. J.; Fang, X. Y; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C2018, 6, 4586–4602.

    Article  CAS  Google Scholar 

  33. Wang, H. C; Meng, F. B.; Li, J. Y.; Li, T.; Chen, Z. J.; Luo, H. B.; Zhou, Z. W. Carbonized design of hierarchical porous carbon/Fe304@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 11801–11810.

    Article  CAS  Google Scholar 

  34. Meng, F. B.; Wei, W.; Chen, X. G; Xu, X. L.; Jiang, M.; Lu, J.; Wang Y.; Zhou, Z. W. Design of porous C@Fe304 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    Article  CAS  Google Scholar 

  35. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small2018, 14, 1800987.

    Article  Google Scholar 

  36. Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C2015, 3, 10017–10022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51903213) and the Science and Technology Planning Project of Sichuan Province (Nos. 2018GZ0132 and 2018GZ0427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanbin Meng.

Electronic Supplementary Material

12274_2020_2632_MOESM1_ESM.pdf

Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhi, D., Chen, Y. et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13, 477–484 (2020). https://doi.org/10.1007/s12274-020-2632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2632-0

Keywords

Navigation