A new peculiar species of the subterranean rodent Ctenomys (Rodentia, Ctenomyidae) from the Holocene of central Argentina

https://doi.org/10.1016/j.jsames.2020.102499Get rights and content

Highlights

  • A new species of the rodent Ctenomys from the Holocene of Pampa de Achala, central Argentina, is described.

  • Phylogenetic analysis shows close relationship between the new species and the living Ctenomys osvaldoreigi.

  • This is the first report of extinction of a Ctenomys species in the Holocene.

Abstract

The subterranean rodent Ctenomys is the single living representative of the family Ctenomyidae, and the most diverse genus within Hystricomorpha. Its fossil record begins in the late Pliocene and shows an increase in diversity since the Pleistocene. Here we describe a new middle-sized Ctenomys species from a large cranial sample collected at the archaeological site Quebrada del Real 1 in the high plains of the Pampa de Achala (Córdoba, Argentina). For this goal, we analyzed the cranial and mandibular shape variation through a geometric morphometric approach, and performed a comparative morphological analysis in the context of the living Ctenomys. The new species is characterized by having a wide rostrum with a deep rostral fossa, strong temporal fossa in the frontal, upper incisors strongly procumbent and with grooved enamel, and mandible with low corpus, long procumbent diastema and descending masseteric crest. A phylogenetic analysis demonstrated its close affinity with Ctenomys osvaldoreigi, an extant species from a nearby area. The new species represents the first notice of an extinct Ctenomys species from the Holocene. Given its peculiar morphology, the extinction of this species would have resulted in significant loss of morphological diversity, thus constraining the current boundaries of variation of the genus. The last record of the new species occurs in a period characterized by marked extinction of small mammals in southern South America mainly due to anthropogenic causes.

Introduction

Ctenomyidae is a family of hystricomorph rodents endemic to southern South America, represented in the living fauna only by the highly polytypic subterranean genus Ctenomys (Bidau, 2015; Freitas, 2016). The oldest fossils of the family are recorded in the late Oligocene-early Miocene of southern Peru, eastern Bolivia and southern Argentina (Lavocat, 1976; Shockey et al., 2009; Verzi et al., 2014, 2016). Nevertheless, the differentiation of the clade did not take place until the late Miocene, when several extinct genera with dental morphology similar to that of extant species (i.e. rootless molars with simplified, crescent-shaped occlusal morphology) are recorded in central and western Argentina (Reig et al., 1990; Verzi et al., 2014). This stage of differentiation of the clade Ctenomyidae involves the rise of lineages with disparate specializations for digging and subterranean life (Verzi, 2008). The only survivor of these modern lineages, Ctenomys, is recognized in the fossil record since the late Pliocene, although its origin, by split from its sister group, might be previous (Verzi, 2008; Verzi et al., 2010a). Ctenomys underwent strong cladogenesis that gave rise to over 70 extant species (Azurduy, 2005; Gardner et al., 2014; Patton et al., 2015) and an undetermined number of extinct ones (Mones, 1986 and literature therein; Verzi et al., 2004, 2010a; Azurduy, 2005; Lucero et al., 2008). This high rate of speciation is unique among family-level caviomorph clades (Álvarez et al., 2017). Accordingly, the genus is not only highly diverse in the living fauna, but also rich in the fossil record, especially since the Pleistocene. Whereas the Pliocene-middle Pleistocene fossils represent extinct species (Rusconi, 1931; Verzi et al., 2004 and literature therein; Verzi et al., 2010a), those described from latest Pleistocene-Holocene paleontological and archaeological sites correspond to extant species (e.g. Bárcena et al., 1985; Pardiñas, 2001; Quintana, 2004; Chan et al., 2005; Hadler et al., 2008; De Santi et al., 2018). Although this could reflect the existence of a temporal pattern underlying the origin of living species, there could also be a bias due to poor knowledge of the paleontological and archaeological record of the genus. Indeed, at least part of the numerous materials recovered from the latest Pleistocene-Holocene, and not yet studied at the species level, could represent undescribed extinct species (e.g. Salemme and Tonni, 1983; Bonomo and Massigoge, 2004; Martín and San Román, 2010; Fernández et al., 2011, 2016; Medina et al., 2011; Salemme et al., 2012; Luna and Cruz, 2014; López et al., 2016; Tammone et al., 2017). During the Holocene, mammals experienced severe extinction due to climatic and/or anthropic causes (Turvey and Fritz, 2011; Teta et al., 2014); thus, it would be expected that Ctenomys populations, which are vulnerable due to some of their distinctive ecological features linked to the subterranean niche, may also have undergone extinction during this epoch.

In this work we present an extensive sample of Ctenomys from the archaeological site Quebrada del Real 1 (QR1), located in the hilly region of central Argentina (Rivero et al., 2008; Rivero, 2009). The materials were recovered from middle-late Holocene levels and correspond to a recently extinct population. The new materials are described and compared to an exhaustive sample of extant species in order to test whether they correspond to any of the latter or, on the contrary, they represent a new extinct species. We also discuss the evolutionary information provided by these new materials.

Section snippets

Geographic and stratigraphic setting

The archaeological site Quebrada del Real 1 is a rock cave located in the high plains of the Pampa de Achala (31° 40.330′ S, 64° 53.538′ W; Córdoba Province, Argentina) at an altitude of 1914 m.a.s.l. (Rivero et al., 2008; Rivero, 2009) (Fig. 1). The locality is surrounded by rocky outcrops, deep ravines and extensive meadows belonging to the upper Sierras Grandes mountain range (Luti et al., 1979; Giorgis et al., 2011). From a zoogeographical viewpoint, the site is included in the Subandean

Material and methods

The Ctenomys sample from QR1 includes 1173 specimens (see Appendix A1). Only one of the skull fragments corresponds to a posterior region with part of the basicranium, occiput and auditory bullae; the remaining skull materials are fragments of the rostrum or palate, and a few isolated auditory bullae; only a few remains of skull and mandible have preserved incisors and molariforms.

Nomenclature of craniomandibular traits follows Hill (1935), Woods (1972), Wahlert (1974, 1985), Wible et al. (2005)

Phylogeny

The parsimony analysis based on the combined matrix resulted in a single most parsimonious tree, 1279 steps long (CI = 0.50; RI = 0.52; Fig. 2). In the recovered topology, Ctenomys QR1 clustered with the living C. osvaldoreigi, C. leucodon and C. tuconax, based on having the tip of the mastoid apophysis level with or ventral to the ventral margin of the external auditory meatus (character-state 18.1). Within this clade, Ctenomys QR1 was sister to C. osvaldoreigi, a relationship supported by

Systematic paleontology

According to the results of the phylogenetic and comparative morphometric analyses, we recognize the sample from QR1 as a new species. Below we provide the formal description of this new taxon.

  • Order Rodentia Bowdich, 1821.

  • Suborder Hystricomorpha Brandt, 1855.

  • Superfamily Octodontoidea Waterhouse, 1839

  • Family Ctenomyidae Lesson, 1842.

  • Genus Ctenomys Blainville, 1826

  • Ctenomys viarapaensis sp. nov.

  • (Fig. 4, Fig. 5)

Holotype. MLP 2935, anterior portion of the cranium with the nasal bones, the right

Discussion and conclusions

The morphological and morphometric analyses suggest strong similarity between C. viarapaensis and the extant C. osvaldoreigi. Noticeably, the latter species, which is known with certainty only for its type locality, is distributed over the same geographical area as C. viarapaensis, in the Sierras Grandes of Córdoba, about 30 km northeast of the site QR1 (Fig. 1; Bidau, 2015; Freitas, 2016). Moreover, a population presumably belonging to C. osvaldoreigi has been detected in Pampa de Achala,

CRediT authorship contribution statement

Nahuel A. De Santi: Conceptualization, Formal analysis, Writing - original draft, Writing - review & editing, Visualization. Diego H. Verzi: Conceptualization, Writing - original draft, Writing - review & editing, Project administration. A. Itatí Olivares: Conceptualization, Formal analysis, Writing - review & editing, Visualization. Pedro Piñero: Writing - original draft, Visualization. Cecilia C. Morgan: Writing - original draft, Writing - review & editing. Matías E. Medina: Resources,

Acknowledgements

We thank MA Reguero, P Teta, A Martinelli, M Ezcurra, L Chornogubsky, G D’Elía, M Díaz, S Bogan, MI Rosi, J Oliveira, S Giannoni and J Vargas Mattos; A Álvarez for kindly providing photographs of specimens from FMNH. We acknowledge the critical comments and suggestions of FJ Fernández and two anonymous reviewers which improved the manuscript. This research was supported by Agencia Nacional de Promoción Científica y Tecnológica PICT 2016-2881.

References (105)

  • M. Andreazzini et al.

    Análisis e interpretación paleoambiental de secuencias del Cuaternario Superior en pampas de altura del sector centro-sur de la Sierra de Comechingones, Córdoba, Argentina

    Lat. Am. J. Sedimentol. Basin Anal.

    (2013)
  • H. Azurduy

    Una nueva especie fósil de Ctenomys (Rodentia) y breve panorama paleontológico del género en Bolivia

    Kempffiana

    (2005)
  • J.R. Bárcena et al.

    Aportes arqueofito-zoológicos para la prehistoria del NO de la provincia de Mendoza: La excavación de Agua de La Tinaja I

    Trab. Prehist.

    (1985)
  • A.D. Barnosky

    Mosaic evolution at the population level in Microtus pennsylvanicus

  • A.D. Barnosky et al.

    Evolution, climatic change and species boundaries: perspectives from tracing Lemmiscus curtatus populations through time and space

    Proc. R. Soc. Lond. Ser. B

    (2003)
  • S. Bertelli et al.

    A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences

    Cladistics

    (2005)
  • C.J. Bidau

    Ctenomyidae

  • M.H. Blainville

    Sur une nouvelle espéce de rongeur fouisseur du Brésil

    Nouveau Bulletin des Sciences par la Société Philomatique de Paris

    (1826)
  • M. Bonomo et al.

    Análisis tafonómico del conjunto faunístico del sitio arqueológico Nutria Mansa 1 (partido de General Alvarado)

  • T.E. Bowdich

    An Analysis of the Natural Classifications of Mammalia, for the Use of Students and Travelers

    (1821)
  • J.F. Brandt

    Beiträge zur nähern Kenntniss der Säugethiere Russland's

    Mémoires de l’Académie Impériale des Sciences de Saint-Pétersbourg, series

    (1855)
  • N. Buc et al.

    The Late Holocene bone tools from Quebrada del Real 1 (Sierras of Córdoba, Argentina)

  • E.H. Bucher et al.

    Fauna

  • M. Cabido et al.

    A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco

    Candollea

    (1998)
  • J. Cei

    Segregación corológica y procesos de especiación por aislamiento en anfibios de Pampa de Achala, Córdoba

    Acta Zool. Lilloana

    (1972)
  • J. Chaline

    Arvicolid data (Arvicolidae, Rodentia) and evolutionary concepts

  • Y.L. Chan et al.

    Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent

    Biol. Lett.

    (2005)
  • Y.L. Chan et al.

    Bayesian estimation of the timing and severity of a population bottleneck from ancient DNA

    PLoS Genet.

    (2006)
  • N.A. De Santi et al.

    El registro fósil de Ctenomys (Octodontoidea, Ctenomyidae) en el Holoceno temprano de Monte Hermoso (Buenos Aires). 31° Jornadas Argentinas de Paleontología de Vertebrados, Libro de Resúmenes. Asociación Paleontológica Argentina, Santa Clara del Mar, Buenos Aires

    PE APA

    (2018)
  • F.J. Fernández et al.

    Environmental stability during the Pleistocene-Holocene transition in northwestern Patagonia? The small mammals of Cueva Huemul 1 as evidence

    Curr. Res. Pleistocene

    (2011)
  • F.J. Fernández et al.

    Micromamíferos del sitio arqueológico Cueva Galpón (Río Negro, Argentina): aspectos tafonómicos y reconstrucción paleoambiental para el Holoceno Tardío en Norpatagonia oriental

    Arqueología

    (2016)
  • D. Frailey et al.

    Additions to the knowledge of Hippocamelus, Ctenomys and Myocastor from the middle Pleistocene of the Tarija basin, Bolivia

    Occas. Pap. Mus. Nat. Hist.

    (1980)
  • T.R.O. Freitas

    Tuco-tucos (Rodentia, Octodontidae) in southern Brazil: Ctenomys lami spec. nov. separated from C. minutus Nehring 1887

    Stud. Neotrop. Fauna Environ.

    (2001)
  • T.R.O. Freitas

    Family Ctenomyidae

  • T.R.O. Freitas et al.

    An endemic new species of tuco-tuco, genus Ctenomys (Rodentia: Ctenomyidae), with a restricted geographic distribution in southern Brazil

    J. Mammal.

    (2012)
  • S.L. Gardner et al.

    New species of Ctenomys Blainville 1826 (Rodentia: Ctenomyidae) from the lowlands and central valleys of Bolivia

    Spec. Publ. Mus. Tex. Tech Univ.

    (2014)
  • H. Gervais et al.
    (1880)
  • M. Giorgis et al.

    Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina

    Kurtziana

    (2011)
  • P. Goloboff et al.

    A free program for phylogenetic analysis

    Cladistics

    (2008)
  • P. Goloboff et al.

    TNT: Tree Analysis Using New Technology

    (2008)
  • P. Hadler et al.

    Caviomorphs (Mammalia, Rodentia) from the Holocene of Rio Grande do Sul state, Brazil: systematics and paleoenvironmental context

    Rev. Bras. Palaontol.

    (2008)
  • T.A. Hall

    BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT

    Nucleic Acids Symp. Ser.

    (1999)
  • B. Hallgrimsson et al.

    Craniofacial variability and modularity in macaques and mice

    J. Exp. Zool. B Mol. Dev. Evol.

    (2004)
  • B. Hallgrimsson et al.

    Evolution of covariance in the mammalian skull

  • S.W. Herring

    Formation of the vertebrate face: epigenetic and functional influences

    Am. Zool.

    (1993)
  • M. Hildebrand

    Digging in quadrupeds

  • J.E. Hill

    The cranial foramina in rodents

    J. Mammal.

    (1935)
  • C.P. Klingenberg

    MorphoJ: an integrated software package for geometric morphometrics

    Mol. Ecol. Resour.

    (2011)
  • J. Krapovickas et al.

    Estratigrafía de las áreas cumbrales de las Sierras Pampeanas de Córdoba: geocronología, modelo regional, paleoambiente y paleoclima en una región poco conocida de Argentina

    Rev. Mex. Ciencias Geol.

    (2016)
  • R. Lavocat

    Rongeurs caviomorphes de l'Oligocène de Bolivie. II Rongeurs du Bassin Deseadien de Salla–Luribay

    Palaeovertebrata

    (1976)
  • View full text