Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt

Abstract

We recently reported that a 4% high-salt diet + saline for drinking (HS + saline) leads to a catabolic state, reduced heart rate, and suppression of cardiovascular energy expenditure in mice. We suggested that HS + saline reduces heart rate via the suppression of the sympathetic nervous system to compensate for the high salt intake-induced catabolic state. To test this hypothesis, we directly measured renal sympathetic nerve activity (RSNA) in conscious Sprague-Dawley (SD) rats using a radiotelemetry system. We confirmed that HS + saline induced a catabolic state. HS + saline decreased heart rate, while also reducing RSNA in SD rats. In contrast, Dahl salt-sensitive (DSS) rats exhibited no change in heart rate and increased RSNA during high salt intake. Renal denervation significantly decreased heart rate and attenuated the catabolic state independent of blood pressure in DSS rats fed HS + saline, suggesting that salt-sensitive animals were unable to decrease cardiovascular energy consumption due to abnormal renal sympathetic nerve activation during high salt intake. These findings support the hypothesis that RSNA mediates heart rate during high salt intake in SD rats. However, the insensitivity of heart rate and enhanced RSNA observed in DSS rats may be additional critical diagnostic factors for salt-sensitive hypertension. Renal denervation may benefit salt-sensitive hypertension by reducing its effects on catabolism and cardiovascular energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonventre JV, Leaf A. Sodium homeostasis: steady states without a set point. Kidney Int. 1982;21:880–3.

    Article  CAS  PubMed  Google Scholar 

  2. Hollenberg NK. Set point for sodium homeostasis: surfeit, deficit, and their implications. Kidney Int. 1980;17:423–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rakova N, Kitada K, Lerchl K, Dahlmann A, Birukov A, Daub S, et al. Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Investig. 2017;127:1932–43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lerchl K, Rakova N, Dahlmann A, Rauh M, Goller U, Basner M, et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension. 2015;66:850–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rakova N, Juttner K, Dahlmann A, Schroder A, Linz P, Kopp C, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013;17:125–31.

    Article  CAS  PubMed  Google Scholar 

  6. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Investig. 2017;127:1944–59.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boudoulas KD, Borer JS, Boudoulas H. Heart rate, life expectancy and the cardiovascular system: therapeutic considerations. Cardiology. 2015;132:199–212.

    Article  PubMed  Google Scholar 

  8. Palatini P. Role of elevated heart rate in the development of cardiovascular disease in hypertension. Hypertension. 2011;58:745–50.

    Article  CAS  PubMed  Google Scholar 

  9. Araujo JP, Lourenco P, Rocha-Goncalves F, Ferreira A, Bettencourt P. Nutritional markers and prognosis in cardiac cachexia. Int J Cardiol. 2011;146:359–63.

    Article  PubMed  Google Scholar 

  10. Loncar G, Fulster S, von Haehling S, Popovic V. Metabolism and the heart: an overview of muscle, fat, and bone metabolism in heart failure. Int J Cardiol. 2013;162:77–85.

    Article  PubMed  Google Scholar 

  11. de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: pathophysiology and therapeutic perspective. Int J Biochem Cell Biol. 2019;108:29–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sufiun A, Rafiq K, Fujisawa Y, Rahman A, Mori H, Nakano D, et al. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats. Hypertens Res. 2015;38:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rafiq K, Fujisawa Y, Sherajee SJ, Rahman A, Sufiun A, Kobori H, et al. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia. 2015;58:2885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lei B, Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, et al. N-type calcium channel inhibition with cilnidipine elicits glomerular podocyte protection independent of sympathetic nerve inhibition. J Pharm Sci. 2012;119:359–67.

    Article  CAS  Google Scholar 

  15. Luippold G, Beilharz M, Muhlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transpl. 2004;19:342–7.

    Article  Google Scholar 

  16. Salman IM, Sarma Kandukuri D, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6:218.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stocker SD, Muntzel MS. Recording sympathetic nerve activity chronically in rats: surgery techniques, assessment of nerve activity, and quantification. Am J Physiol Heart Circ Physiol. 2013;305:H1407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagasu H, Satoh M, Fujimoto S, Tomita N, Sasaki T, Kashihara N. Azelnidipine attenuates glomerular damage in Dahl salt-sensitive rats by suppressing sympathetic nerve activity. Hypertens Res. 2012;35:348–55.

    Article  CAS  PubMed  Google Scholar 

  19. Cohn JN. Sympathetic nervous system activity and the heart. Am J Hypertens. 1989;2:353S–6S.

    Article  CAS  PubMed  Google Scholar 

  20. Thames MD, Miller BD, Abboud FM. Baroreflex regulation of renal nerve activity during volume expansion. Am J Physiol. 1982;243:H810–14.

    CAS  PubMed  Google Scholar 

  21. Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol. 2015;308:R112–22.

    Article  CAS  PubMed  Google Scholar 

  22. Schlaich MP, Esler MD, Fink GD, Osborn JW, Euler DE. Targeting the sympathetic nervous system: critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension. 2014;63:426–32.

    Article  CAS  PubMed  Google Scholar 

  23. Prosnitz EH, DiBona GF. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol. 1978;235:F557–63.

    CAS  PubMed  Google Scholar 

  24. DiBona GF. Neural regulation of renal tubular sodium reabsorption and renin secretion. Fed Proc. 1985;44:2816–22.

    CAS  PubMed  Google Scholar 

  25. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    Article  CAS  PubMed  Google Scholar 

  26. Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nabi AH, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Chang Y, He L, Jian X, Li L, Gao L, et al. Effect of renal sympathetic denervation on hepatic glucose metabolism and blood pressure in a rat model of insulin resistance. J Hypertens. 2016;34:2465–74.

    Article  CAS  PubMed  Google Scholar 

  28. Tsioufis C, Dimitriadis K, Kasiakogias A, Kalos T, Liatakis I, Koutra E, et al. Effects of multielectrode renal denervation on elevated sympathetic nerve activity and insulin resistance in metabolic syndrome. J Hypertens. 2017;35:1100–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kandzari DE, Bohm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  30. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45.

    Article  PubMed  Google Scholar 

  31. Foss JD, Fiege J, Shimizu Y, Collister JP, Mayerhofer T, Wood L, et al. Role of afferent and efferent renal nerves in the development of AngII-salt hypertension in rats. Physiol Rep. 2018;6:e13602.

    Article  PubMed Central  CAS  Google Scholar 

  32. Nagasu H, Satoh M, Kuwabara A, Yorimitsu D, Sakuta T, Tomita N, et al. Renal denervation reduces glomerular injury by suppressing NAD(P)H oxidase activity in Dahl salt-sensitive rats. Nephrol Dial Transpl. 2010;25:2889–98.

    Article  CAS  Google Scholar 

  33. Tudorancea I, Lohmeier TE, Alexander BT, Pieptu D, Serban DN, Iliescu R. Reduced renal mass, salt-sensitive hypertension is resistant to renal denervation. Front Physiol. 2018;9:455.

  34. Symplicity HTNI, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  Google Scholar 

  35. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  36. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN-Japan—first randomized controlled trial of catheter-based renal denervation in asian patients. Circ J. 2015;79:1222–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  38. Feyz L, Theuns DA, Bhagwandien R, Strachinaru M, Kardys I, Van Mieghem NM. et al. Atrial fibrillation reduction by renal sympathetic denervation: 12 months’ results of the AFFORD study. Clin Res Cardiol. 2018;10:018-1391

    Google Scholar 

  39. Warchol-Celinska E, Prejbisz A, Kadziela J, Florczak E, Januszewicz M, Michalowska I, et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept Phase II trial. Hypertension. 2018;72:381–90.

    Article  CAS  PubMed  Google Scholar 

  40. Krawczyk-Ozog A, Tokarek T, Moczala K, Siudak Z, Dziewierz A, Mielecki W, et al. Long-term quality of life and clinical outcomes in patients with resistant hypertension treated with renal denervation. Postepy Kardiol Interwencyjnej. 2016;12:329–33.

    PubMed  PubMed Central  Google Scholar 

  41. Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36:1614–21.

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe H, Iwanaga Y, Miyaji Y, Yamamoto H, Miyazaki S. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with beta-receptor blockade. Hypertens Res. 2016;39:217–26.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang W, Tan L, Guo Y, Li X, Tang X, Yang K. Effect of renal denervation procedure on left ventricular hypertrophy of hypertensive rats and its mechanisms. Acta Cir Bras. 2012;27:815–20.

    Article  PubMed  Google Scholar 

  44. Bohm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C, et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J. 2019;40:743–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI: 18H03191) and the Salt Sciences Foundation (18C5) to AN. We are deeply grateful to Mr. Masao Masui and Ms. Sachiko Okegawa (Osaka General City Hospital) for animal maintenance at Osaka General City Hospital.

Author information

Authors and Affiliations

Authors

Contributions

NM, KK, YF, DY, LL, YZ, and TM performed the animal experiments. KK, TM, YK, TY, JT, and AN provided essential material and contributed to the design of the experiments. SK measured, analyzed, and interpreted the tissue noradrenaline content data. NM and YF performed animal surgery and radiotelemetry measurements. NM, KK, and YF analyzed the radiotelemetry data. NM, KK, DN, DY, JT, and AN designed and planned the experiments and analyzed and interpreted the data. NM, KK, DN, FL, JT, and AN wrote the paper. YK, TY, FL, JT, and AN supervised the research project.

Corresponding author

Correspondence to Kento Kitada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morisawa, N., Kitada, K., Fujisawa, Y. et al. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res 43, 482–491 (2020). https://doi.org/10.1038/s41440-019-0389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0389-1

Keywords

This article is cited by

Search

Quick links