Skip to main content
Log in

Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrochemical reduction of CO2 on gold cathodes was investigated, and the major products were found to be CO, H2 and formate, which is consistent with existing literature. The Faradaic efficiency for CO production decreased from around 60 to 10% over the course of 4 h when the electrolysis was performed at – 5 mA cm–2 in 0.2 M KHCO3 saturated with CO2. This deactivation was accompanied by an increase in the selectivity of the cathode towards H2 and formate production, which is normally attributed to the deposition of metals from trace impurities in the electrolyte or surface-bound species formed during the reaction. In this case, the deactivation was found to be due to the deposition of Cu, Zn and possibly Fe from the electrolyte, with the presence of Fe strongly enhancing H2 production, the Cu deposition increasing the formate production rate and Zn enhancing both H2 and formate production. While the accumulation of these poisons can be prevented with periodic anodic treatments (using methods previously described in the literature), these treatments lead to significant gold dissolution, with up to 450 ppb of gold found in the electrolyte after 4 h of electrolysis, and thus is unsuitable for use in long-term CO2 reduction systems. This dissolution is expected to alter the surface structure and thus selectivity of the cathode. Therefore, alternative electrochemical cleaning protocols (periodic cyclic voltammetry, open-circuit and low anodic current treatments) were investigated as methods to remove these poisons without significant gold corrosion occurring. The best approach to prevent the deactivation of gold cathodes during CO2 reduction is to cycle the potential between − 0.5 and 0.5 V vs Ag|AgCl every 15 min during long-term electrolysis. It is also shown that simply interrupting the CO2 reduction process every 15 min with 4 min at open circuit can also partially prevent the deactivation of the CO2 reduction reaction as will short anodic current pulses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.E. Benson, C.P. Kubiak, A.J. Sathurn, J.M. Smieja, Chem. Soc. Rev. 38(1), 89–99 (2009)

    CAS  PubMed  Google Scholar 

  2. M.R. Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974–1982 (2009)

    PubMed  Google Scholar 

  3. B. Kumar, M. Liorente, J. Froehlich, T. Dang, A.J. Sathurn, C.P. Kubiak, Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    CAS  PubMed  Google Scholar 

  4. E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 6, 3112–3135 (2013)

    CAS  Google Scholar 

  5. H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Chem. Soc. Jpn. 63, 2459–2462 (1990)

    CAS  Google Scholar 

  6. M. Azuma, K. Hashimoto, M. Hiramoto, J. Electrochem. Soc. 137, 1772–1778 (1990)

    CAS  Google Scholar 

  7. J. Augustynski, P. Kedzierzawski, B. Jermann, Stud. Surf. Sci. Catal. 114, 107–116 (1998)

    CAS  Google Scholar 

  8. Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989)

    CAS  Google Scholar 

  9. Y. Hori, K. Kikuchi, S. Suzuki, Chem. Soc. Jpn., 1695–1698 (1985)

  10. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, L. Oniciu, J. Appl. Electrochem. 27, 875–889 (1997)

    CAS  Google Scholar 

  11. R. Kostecki, J. Augustynski, Ber. Bunsenges. Phys. Chem. 98, 1510–1515 (1994)

    CAS  Google Scholar 

  12. H. Yano, F. Shirai, M. Nakayama, K. Ogura, J. Electroanal. Chem. 533, 113–118 (2002)

    CAS  Google Scholar 

  13. B. Jermann, J. Augustynski, Electrochim. Acta 39, 1891–1896 (1994)

    CAS  Google Scholar 

  14. Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma, Electrochim. Acta 50, 5354–5360 (2005)

    CAS  Google Scholar 

  15. P. Kedzierzawski, J. Augustynski, J. Electrochem. Soc. 141, L58–L60 (1994)

    CAS  Google Scholar 

  16. Y. Hori, A. Murata, K. Kikuchi, S. Suzuki, J. Chem. Soc. Chem. Commun. 10, 728–729 (1987)

    Google Scholar 

  17. Y. Hori, in Modern Aspects of Electrochemistry, ed. by C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco. Electrochemical CO2 Reduction on Metal Electrodes, vol 42 (Springer, New York, 2008), pp. 89–189

    Google Scholar 

  18. W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S.H. Sun, J. Am. Chem. Soc. 135, 16833–16836 (2013)

    CAS  PubMed  Google Scholar 

  19. M. Dunwell, L. Qi, J.M. Heyes, J. Rosen, J.G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. 139, 3774–3783 (2017)

    CAS  PubMed  Google Scholar 

  20. S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987)

    CAS  Google Scholar 

  21. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833–1839 (1994)

    CAS  Google Scholar 

  22. A. Wuttig, Y. Surendranath, ACS Catal. 5, 4479–4484 (2015)

    CAS  Google Scholar 

  23. R. Shiratsuchi, Y. Aikoh, G. Nogami, J. Electrochem. Soc. 140, 3479–3482 (1993)

    CAS  Google Scholar 

  24. P. Friebe, P. Bogdanoff, N. Alonso-Vante, H. Tribuysch, J. Catal. 168, 374–385 (1997)

    CAS  Google Scholar 

  25. J. Lee, Y. Tak, Electrochim. Acta 46, 3015–3022 (2001)

    CAS  Google Scholar 

  26. Y. Terunuma, A. Saitoh, Y. Momose, J. Electroanal. Chem. 434, 69–75 (1997)

    CAS  Google Scholar 

  27. Shiratsuchi R. , Ishimaru S. , Nogami G. , Denki Kagaku, 668-70 (1997).

  28. B.P. Sullivan, K. Krist, H.E. Guard, Electrochemical and electrocatalytic reactions of carbon dioxide (Elsevier Science Publishers B.V, Amsterdam, 1993)

    Google Scholar 

  29. R. Kas, R. Kortlever, H. Yilmaz, M. Koper, G. M, Chem. Commun. 2, 354–358 (2015)

    CAS  Google Scholar 

  30. D.W. DeWulf, T. Jin, A.J. Bard, J. Electrochem. Soc. 136, 1686–1691 (1989)

    CAS  Google Scholar 

  31. S. Wasmus, E. Cattaneo, W. Vielstich, Electrochim. Acta 35, 771–775 (1990)

    CAS  Google Scholar 

  32. G. Kyriacou, A. Anagnostopoulos, J. Electroanal. Chem. 322, 233–246 (1992)

    CAS  Google Scholar 

  33. J.F. Xie, Y.X. Huang, W.W. Li, X.N. Song, L. Xiong, H.Q. Yu, Electrochim. Acta 139, 137–144 (2014)

    CAS  Google Scholar 

  34. C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 222, 133–140 (2016)

    CAS  Google Scholar 

  35. L. Qi, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. 5 (2014)

  36. E.A. Batista, M.L. Temperini, J. Electroanal. Chem. 629, 158–163 (2009)

    CAS  Google Scholar 

  37. J.C. Hoogvliet, M. Dijksma, B. Kamp, W.P. van Bennekom, Anal. Chem. 72(9), 2016–2021 (2000)

    CAS  PubMed  Google Scholar 

  38. E.R. Cave, J.H. Montoya, K.P. Kuhl, D.N. Abram, T. Hatsukade, C. Shi, C. Hahn, J.K. Norskov, T. Jaramillo, Phys. Chem. Chem. Phys. 19(24), 15856–15863 (2017)

    CAS  PubMed  Google Scholar 

  39. S. Cherevko, A.A. Topalov, I. Katsounaros, K.J. Mayrhofer, Electrochem. Commun. 28, 44–46 (2013)

    CAS  Google Scholar 

  40. D.A.J. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 35, 209–218 (1972)

    CAS  Google Scholar 

  41. S. Cherevko, A.A. Topalov, A.R. Zeradjanin, I. Katsounaros, K.J. Mayrhofer, J. R. Soc. Chem. 3, 16516–16527 (2013)

    CAS  Google Scholar 

  42. S. Cherevko, A.R. Zeradjanin, G.P. Keeley, K.J. Mayrhofer, J. Electrochem. Soc. 161, H822–H830 (2014)

    Google Scholar 

  43. A.C. Cruickshank, A.J. Downard, Electrochim. Acta 54, 5566–5570 (2009)

    CAS  Google Scholar 

  44. J.T. Steven, V.B. Golovko, B. Johannessen, A.T. Marshall, Electrochim. Acta 187, 593–604 (2016)

    CAS  Google Scholar 

  45. Y. Wang, E. Laborda, A. Crossley, R.G. Compton, Phys. Chem. Chem. Phys. Commun. 15 (2013)

    CAS  PubMed  Google Scholar 

  46. K. Kodama, A. Beniya, N. Isomura, Y. Watanabe, Electrocatalysis, 1–9 (2018)

  47. C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 238, 56–63 (2017)

    CAS  Google Scholar 

  48. H. Noda, S. Ikeda, A. Yamamoto, H. Einaga, K. Ito, Bull. Chem. Soc. Jpn. 68, 1889–1895 (1995)

    CAS  Google Scholar 

  49. J.J. Wu, S. Sun, X.D. Zhou, Nano Energy 27, 225–229 (2016)

    CAS  Google Scholar 

  50. M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 137, 1772–1778 (1990)

    CAS  Google Scholar 

  51. P. Rodriguez, M. Koper, Phys. Chem. Chem. Phys. 16(27), 13583–13594 (2014)

    CAS  PubMed  Google Scholar 

  52. P. Rodriguez, N.G. Araez, M. Koper, Phys. Chem. Chem. Phys. 12(32), 9373–9380 (2010)

    CAS  PubMed  Google Scholar 

  53. P. Rodriguez, A. Koverga, M. Koper, Angew. Chem. Int. Ed. 49(7), 1241–1243 (2010)

    CAS  Google Scholar 

  54. G.J. Edens, A. Hamelin, M.J. Weaver, J. Phys. Chem. 100, 2322–2329 (1996)

    CAS  Google Scholar 

  55. N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36, 161–172 (2006)

    CAS  Google Scholar 

  56. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, 1966)

  57. S. González, M. Pérez, M. Barrera, A.R. González Elipe, R.M. Souto, J. Phys. Chem. B 102, 5483–5489 (1998)

    Google Scholar 

  58. N. Batina, D.M. Kolb, R.J. Nichols, Langmuir 8, 2572–2576 (1992)

    CAS  Google Scholar 

  59. J.E.T. Andersen, G. Bech-Nielsen, P. Møller, J.C. Reeve, J. Appl. Electrochem. 26, 161–170 (1996)

    CAS  Google Scholar 

  60. Y. Chen, Y. Huang, T. Cheng, W.A. Goddard, J. Am. Chem. Soc. (2019)

  61. S. Back, M.S. Yeom, Y. Jung, ACS Catal. 5, 5089–5096 (2015)

    CAS  Google Scholar 

  62. W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 136, 16132–16135 (2014)

    CAS  PubMed  Google Scholar 

  63. T. Cheng, Y. Huang, H. Xiao, W.A. Goddard, J. Phys. Chem. Lett. 8, 3317–3320 (2017)

    CAS  PubMed  Google Scholar 

  64. H.C. Patel, A.N. Tabish, F. Comelli, P.V. Aravind, Appl. Energy 154, 912–920 (2015)

    CAS  Google Scholar 

  65. J.W. Vickers, D. Alfonso, D.R. Kauffman, Energy Technol. 5, 775–795 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in part at the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy, through the La Trobe University Centre for Materials and Surface Science. We also thank Colin Doyle (University of Auckland) for assistance with XPS analysis samples.

Funding

We received funding from MacDiarmid Institute for Advances Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Marshall.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangari, H.T., Marshall, A.T. Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution. Electrocatalysis 11, 25–34 (2020). https://doi.org/10.1007/s12678-019-00564-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00564-z

Keywords

Navigation