Skip to main content
Log in

Iodide as Terminating Agent for Platinum Electrodeposition

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

“Approximate” Pt layers hold great promise to be highly active and durable oxygen reduction reaction (ORR) catalysts. Electrodeposition of such layers on relevant catalyst supports, for example TiOx, requires the application of a “Pt-on-Pt” deposition limiter to keep layers thin and leave no atom behind for catalysis. Classic Pt-on-Pt deposition limiting agents like CO and over-potential deposited hydrogen (Hopd) work reliably on gold but fail on TiOx substrates. Iodide, in contrast, is a new “Pt-on-Pt” deposition limiting agent that shows substantial Pt layer thickness reduction during electrodeposition on gold as well as TiOx substrates.

Limitations are not always a bad thing: The addition of NaI during Pt electrodeposition from Ar-saturated 0.1 mM K2PtCl4 + 0.1 M HClO4 solution limits the Pt deposition amount and leads to a substantial reduction in Pt layer thickness and a concurrent increase in ORR mass activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)

    CAS  Google Scholar 

  2. H.A. Gasteiger, J. Garche, Fuel Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Handbook of Heterogeneous Catalysis, 2008)

    Google Scholar 

  3. Statista. Number of cars sold worldwide from 1990 to 2018 (in million units). 2018.

  4. H.A. Gasteiger, N.M. Marković, Just a dream—or future reality? Science. 324, 48 (2009)

    CAS  PubMed  Google Scholar 

  5. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 486(7401), 43–51 (2012)

    CAS  PubMed  Google Scholar 

  6. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    CAS  PubMed  Google Scholar 

  7. Harkness I, Sharman J. Fibrous Pt Catalysts Created with ALD-Deposited Pt on Oxide, Carbide or Nitride Surface Tie Layers Where the Pt Deposits Extend over the Surface in Large Contiguous Islands or as Continuous Film. Novel Catalyst Structures Employing Pt at Ultra Low and Zero Loadings for Automotive MEAs (CATAPULT); 2014.

  8. Harkness I, Sharman J, Bosund M, Geppert T, El-Sayed H, Gasteiger HA, et al. Demonstration of Pt-Catalysed Non-Carbon Support with Higher Mass Activity than Conventional Pt/C Nanoparticles and in Excess of 0.15 A/Mg Pt. Novel Catalyst Structures Employing Pt at Ultra Low and Zero Loadings for Automotive MEAs (CATAPULT); 2014.

  9. M.K. Debe, Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J. Electrochem. Soc. 160, F522–FF34 (2013)

    CAS  Google Scholar 

  10. M.K. Debe, Nanostructured thin film electrocatalysts for PEM fuel cells - a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans. 45, 47–68 (2012)

    CAS  Google Scholar 

  11. M.K. Debe, R.T. Atanasoski, A.J. Steinbach, Nanostructured thin film electrocatalysts - current status and future potential. ECS Trans. 41, 937–954 (2011)

    Google Scholar 

  12. M. Watanabe, S. Saegusa, P. Stonehart, High platinum electrocatalyst utilizations for direct methanol oxidation. J. Electroanal. Chem. Interfacial Electrochem. 271, 213–220 (1989)

    CAS  Google Scholar 

  13. M. Watanabe, H. Sei, P. Stonehart, The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. Interfacial Electrochem. 261, 375–387 (1989)

    CAS  Google Scholar 

  14. M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, et al., The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12(10), 919–924 (2013)

    CAS  PubMed  Google Scholar 

  15. J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4, 14971–14978 (2014)

    CAS  Google Scholar 

  16. J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, et al., From single crystal model catalysts to systematic studies of supported nanoparticles. Surf. Sci. 631, 278–284 (2015)

    CAS  Google Scholar 

  17. S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, The “Particle Proximity Effect” in three dimensions: a case study on Vulcan XC 72R. Electrocatalysis. 7, 249–261 (2016)

    CAS  Google Scholar 

  18. J. Huang, J. Zhang, M.H. Eikerling, Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. J. Phys. Chem. C 121, 4806–4815 (2017)

    CAS  Google Scholar 

  19. S. Proch, S. Yoshino, N. Takahashi, J. Seki, S. Kosaka, K. Kodama, et al., The native oxide on titanium metal as a conductive model substrate for oxygen reduction reaction studies. Electrocatalysis. 9, 608–622 (2018)

    CAS  Google Scholar 

  20. S. Proch, S. Yoshino, Y. Kamitaka, N. Takahashi, J. Seki, K. Kodama, Hydrogen treatment as potential protection of electrodeposited Pt, Au, and Pt/Au oxygen reduction catalysts on TiOx. Electrocatalysis. 10, 1–16 (2019)

    CAS  Google Scholar 

  21. Proch S, Yoshino S, Kitazumi K, Seki J, Kodama K, Morimoto Y. Over-potential deposited hydrogen (Hopd) as terminating agent for platinum and gold electro(co)deposition. Electrocatalysis. 2019.

  22. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)

    CAS  PubMed  Google Scholar 

  23. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46, 285–305 (2007)

    CAS  Google Scholar 

  24. N.R. Elezovic, V.R. Radmilovic, N.V. Krstajic, Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. RSC Adv. 6, 6788–6801 (2016)

    CAS  Google Scholar 

  25. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, et al., A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A2A6 (2005)

    CAS  Google Scholar 

  26. F.N. Buechi, T.J. Schmidt, Polymer electrolyte fuel cell durability (Springer Science + Business Media, LLC., New York, 2009)

    Google Scholar 

  27. A. Michaelis, in Advances in Electrochemical Science and Engineering, ed. by R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross. Valve metal, Si and ceramic oxides as dielectric films for passive and active electronic devices (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 1–106

    Google Scholar 

  28. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi, Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem. 6(4), 659–666 (2013)

    CAS  PubMed  Google Scholar 

  29. S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, CO-terminated platinum electrodeposition on Nb-doped bulk rutile TiO2. Electrocatalysis. 7, 362–375 (2016)

    CAS  Google Scholar 

  30. M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, Ota K-i. Effect of tin oxides on oxide formation and reduction of platinum particles. Electrochem. Solid-State Lett. 10, F1–F4 (2007)

    CAS  Google Scholar 

  31. B.E. Hayden, Particle size and support effects in electrocatalysis. Acc. Chem. Res. 46(8), 1858–1866 (2013)

    CAS  PubMed  Google Scholar 

  32. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys. Chem. Chem. Phys. 11(10), 1564–1570 (2009)

    CAS  PubMed  Google Scholar 

  33. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of support and particle size on the platinum catalysed oxygen reduction reaction. Phys. Chem. Chem. Phys. 11(40), 9141–9148 (2009)

    CAS  PubMed  Google Scholar 

  34. D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal. Chem. 83(6), 1916–1923 (2011)

    PubMed  Google Scholar 

  35. A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2019, 2791–2808 (2009)

    Google Scholar 

  36. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)

    CAS  PubMed  Google Scholar 

  37. S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, et al., Acetylene-treated titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis. 8, 351–365 (2017)

    CAS  Google Scholar 

  38. S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis. 7, 451–465 (2016)

    CAS  Google Scholar 

  39. S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, CO-terminated Pt/Au codeposition on titania nanotube arrays (TNAs). Electrocatalysis. 8, 480–491 (2017)

    CAS  Google Scholar 

  40. S. Brimaud, R.J. Behm, Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135(32), 11716–11719 (2013)

    CAS  PubMed  Google Scholar 

  41. Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Self-terminating growth of platinum films by electrochemical deposition. Science. 338(6112), 1327–1330 (2012)

    CAS  PubMed  Google Scholar 

  42. D. Kim, J. Kim, Effect of anionic electrolytes and precursor concentrations on the electrodeposited Pt structures. Electroanalysis. 29, 387–391 (2017)

    CAS  Google Scholar 

  43. G. Jerkiewicz, Electrochemical hydrogen adsorption and absorption. Part 1: under-potential deposition of hydrogen. Electrocatalysis. 1, 179–199 (2010)

    CAS  Google Scholar 

  44. D. Sazou, K. Saltidou, M. Pagitsas, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim. Acta 76, 48–61 (2012)

    CAS  Google Scholar 

  45. D.C. Johnson, A study of the adsorption and desorption of iodine and iodide at platinum electrodes in 1.0M sulfuric acid. J. Electrochem. Soc. 119, 331–339 (1972)

    CAS  Google Scholar 

  46. D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, van der V, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013)

    CAS  PubMed  Google Scholar 

  47. A.J. Bard, L.R. Faulkner, Electrochemical Methods - Fundamentals and Applications, 2nd edn. (John Wiley & Sons, Inc., New York, 2001)

    Google Scholar 

  48. M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133(43), 17428–17433 (2011)

    CAS  PubMed  Google Scholar 

  49. J. Perez, E.R. Gonzalez, H.M. Villullas, Hydrogen evolution reaction on gold single-crystal electrodes in acid solutions. J. Phys. Chem. B 102, 10931–10935 (1998)

    CAS  Google Scholar 

  50. G. Jerkiewicz, Hydrogen sorption ATIN electrodes. Prog. Surf. Sci. 57, 137–186 (1998)

    CAS  Google Scholar 

  51. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130(1), 370–381 (2008)

    CAS  PubMed  Google Scholar 

  52. S.M. Alia, B.A. Larsen, S. Pylypenko, D.A. Cullen, D.R. Diercks, K.C. Neyerlin, et al., Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114–1119 (2014)

    CAS  Google Scholar 

  53. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82(15), 6321–6328 (2010)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Proch, Kensaku Kodama or Yu Morimoto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proch, S., Yoshino, S., Seki, J. et al. Iodide as Terminating Agent for Platinum Electrodeposition. Electrocatalysis 11, 14–24 (2020). https://doi.org/10.1007/s12678-019-00562-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00562-1

Keywords

Navigation