Skip to main content
Log in

Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed. Fatigue tests under constant-amplitude loading with overload peak were carried out on V-notched specimens. Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload. Scanning electron microscopy (SEM) analyses were conducted on the fractured surface of failed specimens to study the retardation effect. The obtained results show that the overload application generates a plastic zone in both aluminum alloys. The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6, and thus, a significant crack retardation was induced for 2024-T3. The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm, respectively, from the point of overload application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Dai, S. Li, and Z.H. Li, The effects of overload on the fatigue crack growth in ductile materials predicted by plasticity-corrected stress intensity factor, Eng. Fract. Mech., 111(2013), p. 26.

    Article  Google Scholar 

  2. B.J.P. Belnoue, T.S. Jun, F. Hofmann, B. Abbey, and A.M. Korsunsky, Evaluation of the overload effect on fatigue crack growth with the help of synchrotron XRD strain mapping, Eng. Fract. Mech., 77(2010), No. 16, p. 3216.

    Article  Google Scholar 

  3. A. Arcari and N.E. Dowling, Modeling mean stress relaxation in variable amplitude loading for 7075-T6511 and 7249-T76511 high strength aluminium alloys, Int. J. Fatigue, 42(2012), p. 238.

    Article  CAS  Google Scholar 

  4. Z.Y. Ding, X.G. Wang, Z.L. Gao, and S.Y. Bao, An experimental investigation and prediction of fatigue crack growth under overload/underload in Q345R steel, Int. J. Fatigue, 98(2017), p. 155.

    Article  CAS  Google Scholar 

  5. S.C. Li, Y.H. Zhang, L. Qi, and Y.L. Kang, Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel, Int. J. Fatigue, 106(2018), p. 49.

    Article  CAS  Google Scholar 

  6. J. Saarimäki, J. Moverare, R. Eriksson, and S. Johansson, Influence of overloads on dwell time fatigue crack growth in Inconel718, Mater. Sci. Eng. A, 612(2014), p. 398.

    Article  Google Scholar 

  7. S.M. Beden, S. Abdullah, A.K. Ariffin, and N.A. Al-Asady, Fatigue crack growth simulation of aluminium alloy under spectrum loadings, Mater. Des., 31(2010), No. 7, p. 3449.

    Article  CAS  Google Scholar 

  8. S. Mikheevskiy, S. Bogdanov, and G. Glinka, Analysis of fatigue crack growth under spectrum loading — The UniGrow fatigue crack growth model, Theor. Appl. Fract. Mech., 79(2015), p. 25.

    Article  CAS  Google Scholar 

  9. A. Albedah, S.M. Khan, B. Bouiadjra, and F. Benyahia, Fatigue crack propagation in aluminum plates with composite patch including plasticity effect, Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, 232(2017), No. 11, p. 2122.

    Article  Google Scholar 

  10. B.B. Verma, A. Kumar, and P.K. Ray, Fatigue crack growth delay following overload, Trans. Indian Inst. Met., 53(2000), No. 6, p. 291.

    CAS  Google Scholar 

  11. A.J. McEvily, S. Ishikawa, and C. Makabe, The influence of the baseline R value on the extent of retardation after an overload, [in] Mechanism and Mechanics of Fracture: The John Knott Symposium, Columbus, 2002. p. 37.

    Google Scholar 

  12. C.M. Ward-Close, A.F. Blom, and R.O. Ritchie, Mechanisms associated with transient fatigue crack growth under variable-amplitude loading: An experimental and numerical study, Eng. Fract. Mech., 32(1989), No. 4, p. 613.

    Article  Google Scholar 

  13. M.J. Doré and S.J. Maddox, Accelerated fatigue crack growth in 6082-T651 aluminium alloy subjected to periodic underloads, Procedia Eng., 66(2013), p. 313.

    Article  Google Scholar 

  14. I.S. Putra and J. Schijve, Crack opening stress measurements of surface cracks in 7075-T6 Al alloy plate specimens through electron fractography, Fatigue Fract. Eng. Mater. Struct., 15(1992), p. 323.

    Article  CAS  Google Scholar 

  15. M.N. James and A.E. Paterson, Fatigue performance of 6261-T6 aluminium alloy — constant and variable amplitude loading of parent plate and welded specimens, Int. J. Fatigue, 19(1997), No. 93, p. 109.

    Article  Google Scholar 

  16. M. Benachour, A. Hadjoui, M. Benguediab, and N. Benachour, Effect of the amplitude loading on fatigue crack growth, Procedia Eng., 2(2010), No. 1, p. 121.

    Article  CAS  Google Scholar 

  17. P.K. Liaw, T.R. Leax, and W.A. Logsdon, Near threshold fatigue crack growth behavior in metals, Acta Metall., 31(1983), No. 10, p. 1581.

    Article  CAS  Google Scholar 

  18. K.W. Jones and M.L. Dunn, Fatigue crack growth through a residual stress field introduced by plastic beam bending, Fatigue Fract. Eng. Mater. Struct., 31(2008), No. 10, p. 863.

    Article  Google Scholar 

  19. N. Ranganathan, Certain issues in variable amplitude fatigue, Procedia Eng., 101(2015), p. 404.

    Article  CAS  Google Scholar 

  20. J. Schijve, The significance of fractography for investigations of fatigue crack growth under variable-amplitude loading, Fatigue Fract. Eng. Mater. Struct., 22(1999), p. 87.

    Article  CAS  Google Scholar 

  21. J. Schijve, The application of small overloads for fractography of small fatigue cracks initiated under constantamplitude loading, Int. J. Fatigue, 70(2015), p. 63.

    Article  CAS  Google Scholar 

  22. Annual Book of ASTM Standards, Standard A. E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, 2000, p. 628.

    Google Scholar 

  23. Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987, p. 9.

    Google Scholar 

  24. S. Datta, A. Chattopadhyay, N. Iyyer, and N. Phan, Fatigue crack propagation under biaxial fatigue loading with single overloads, Int. J. Fatigue, 109(2018), p. 103.

    Article  CAS  Google Scholar 

  25. M. Skorupa, Load interaction effects during fatigue crack growth under variable amplitude loading — A literature review. Part I: empirical trends, Fatigue Fract. Eng. Mater. Struct., 21(1998), p. 987.

    Article  CAS  Google Scholar 

  26. S.M.A.K. Mohammed, A. Albedah, F. Benyahia, and B.B. Bouiadjra, Effect of single tensile peak overload on the performance of bonded composite repair of cracked Al 2024- T3 and Al 7075-T6 plates, Compos. Struct., 193(2018), p. 260.

    Article  Google Scholar 

  27. S.M.A.K. Mohammed, B.B. Bouiadjra, F. Benyahia, and A. Albedah, Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch, Eng. Fract. Mech., 202(2018), p. 147.

    Article  Google Scholar 

  28. T.W. Zhao, J.X. Zhang, and Y.Y. Jiang, A study of fatigue crack growth of 7075-T651 aluminum alloy, Int. J. Fatigue, 30(2008), No. 7, p. 1169.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group (No. RGP-VPP-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Albedah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albedah, A., Bouiadjra, B.B., Mohammed, S.M.A.K. et al. Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys. Int J Miner Metall Mater 27, 83–90 (2020). https://doi.org/10.1007/s12613-019-1896-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1896-4

Keywords

Navigation