Skip to main content
Log in

Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700-900°C led to a solid-state reaction to mainly form the K2MgSi04 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSi04 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil: methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSi04.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Auzende, I. Daniel, B. Reynard, C. Lemaire, and F. Guyot, High-pressure behavior of serpentine minerals: A Raman spectroscopic study, Phys. Chem. Miner., 31(2004), No. 5, p. 269.

    Article  CAS  Google Scholar 

  2. S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, 646(2015), p. 1.

    Article  Google Scholar 

  3. B.W. Evans, K. Hattori, and A. Baronnet, Serpentinite: what, why, where? Elements, 9(2013), No. 2, p. 99.

    Article  CAS  Google Scholar 

  4. B.T. Mossman, J. Bignon, M. Corn, A. Seaton, and J.B. Gee, Asbestos: scientific developments and implications for public policy, Science, 247(1990), No. 4940, p. 294.

    Article  CAS  Google Scholar 

  5. G.C. Capitani and M. Mellini, The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction, Am. Mineral., 91(2006), No. 2–3, p. 394.

    Article  CAS  Google Scholar 

  6. M. Claverie, A. Dumas, C. Careme, M. Poirier, C. Le Roux, P. Micoud, F. Martin, and C. Aymonier, Synthetic talc and talc-like structures: Preparation, features and applications, Chemistry, 24(2018), No. 3, p. 519.

    Article  CAS  Google Scholar 

  7. S.S. Vieira, G.M. Paz, A.P.C. Teixeira, E.M. Moura, O.R. Carmignano, R.C.O. Sebastiao, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with Li+ to produce Li4SiO4/MgO composites for the efficient capture of CO2, J. Environ. Chem. Eng., 6(2018), No. 4, p. 4189.

    Article  CAS  Google Scholar 

  8. G.M. Paz, S.S. Vieira, A.C. Bertoli, F.C. Ballotin, E.M. de Moura, A.P.C. Teixeira, D. Costa, O. Carmignano, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with NaOH to produce a new basic catalytic phase Na2Mg2Si2O7 for biodiesel production, J. Braz. Chem. Soc, 29(2018), No. 9, p. 1823.

    CAS  Google Scholar 

  9. F.C. Ballotin, T.E. Cibaka, T.A. Ribeiro-Santos, E.M. Santos, AP. de Carvalho Teixeira, and R.M. Lago, K2MgSiO4: A novel K+-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg3Si2O5(OH)4, J. Mol. Catal. A: Chem., 422(2016), p. 258.

    Article  CAS  Google Scholar 

  10. U. Schuchardt, R. Sercheli, and R.M. Vargas, Transesterification of vegetable oils: A review, J. Braz. Chem. Soc, 9(1998), No. 3, p. 199.

    Article  CAS  Google Scholar 

  11. A.P.C. Teixeira, E.M. Santos, A.F.P. Vieira, and R.M. Lago, Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis, Chem. Eng. J., 232(2013), p. 104.

    Article  CAS  Google Scholar 

  12. A. Shakoor and N.L. Thomas, Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites, Pofym. Eng. Sci., 54(2014), No. 1, p. 64.

    CAS  Google Scholar 

  13. R.G. Coleman, Petrologic and geophysical nature of serpentinites, Geol. Soc. Am. Bull, 82(1971), No. 4, p. 897.

    Article  Google Scholar 

  14. M. Wesolowski, Thermal decomposition of talc: A review, Thermochim. Acta, 78(1984), No. 1–3, p. 395.

  15. M.D. Menzel, C.J. Garrido, V.L. Sanchez-Vizcaino, C. Marchesi, K. Hidas, M.P. Escayola, and A.D. Huertas, Carbonation of mantle peridotite by CO2-rich fluids: The formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada), Lithos, 323(2018), p. 238.

    Article  CAS  Google Scholar 

  16. X. Liu, X. Liu, and Y. Hu, Investigation of the thermal decomposition of talc, Clays Clay Miner., 62(2014), No. 2, p. 137.

    Article  CAS  Google Scholar 

  17. C. Viti, Serpentine minerals discrimination by thermal analysis, Am. Mineral, 95(2010), No. 4, p. 631.

    Article  CAS  Google Scholar 

  18. H. Maleki, M. Kazemeini, and F. Bastan, Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst, Chem. Eng. Technol, 40(2017), No. 10, p. 1923.

    Article  CAS  Google Scholar 

  19. A.F. Gualtieri, N.B. Gandolfi, S. Pollastri, M. Burghammer, E. Tibaldi, F. Belpoggi, K. Pollok, F. Langenhorst, R. Vigliaturo, and G. Drazic, New insights into the toxicity of mineral fibers: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibers found in the tissues of Sprague-Dawley rats, Toxicol. Lett, 274(2017), p. 20.

    Article  CAS  Google Scholar 

  20. CM. Yarborough, The risk of mesothelioma from exposure to chrysotile asbestos, Curr. Opin. Pulm. Med., 13(2007), No. 4, p. 334.

    Article  CAS  Google Scholar 

  21. B. Ersoy, S. Dikmen, A. Yildiz, R. Gören, and Ö. Elitok, Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turk. J. Earth Sci., 22(2013), No. 4, p. 632.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Pedras Congonhas LTDA for the samples, the UFMG microscopy center for the images and the support of CNPQ, INCT Midas, CAPES and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochel Montero Lago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballotin, F.C., Nascimento, M., Vieira, S.S. et al. Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production. Int J Miner Metall Mater 27, 46–54 (2020). https://doi.org/10.1007/s12613-019-1891-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1891-9

Keywords

Navigation