Skip to main content
Log in

Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Li and La co-doped Ba(1-x)(Lix/2Lax/2)TiO3 (BLLT) ceramics with x = 0.01, 0.02, 0.03, and 0.04 at A—site was synthesized by sol–gel combustion method. The powder X-ray diffraction and Raman analysis showed a good crystalline nature with perovskite tetragonal structure and the grain size of the samples was estimated and compared using a scanning electron microscope. The decreasing trend in the optical band gap upon doping and carrier concentration values was calculated from UV–Vis absorption spectra. Electron paramagnetic resonance g ~ 1.998 for BLLT ceramics confirms that the electrons are localized near oxygen vacancies. The observed signals may be attributed to the reduction of Ti4+/Ti3+ and its related defects. Moreover, the room temperature magnetization versus magnetic field loops showed the mixed weak ferromagnetic and diamagnetic phase. The enhancement of ε′ with respect to the doping of Li and La ion and increase in particle size due to the number of grain boundaries in BLLT ceramics were studied. The polarization versus electric field of BLLT samples indicates the lossy capacitor behavior, which is attributed to the relatively high leakage current caused by the existence of a defect or oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 393, 253 (2015)

    ADS  Google Scholar 

  2. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 405 (2018)

    Google Scholar 

  3. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, J. Alloy. Compd. 791, 529 (2019)

    Google Scholar 

  4. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, J. Alloy. Compd. 788, 1202 (2019)

    Google Scholar 

  5. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, JETP Lett. 103, 105 (2016)

    ADS  Google Scholar 

  6. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102 (2016)

    Google Scholar 

  7. M.S. Alkathy, R. Gayam, K.C.R. James, Ceram. Int. 42, 15432 (2016)

    Google Scholar 

  8. M.S. Alkathy, K.K. Bokinala, K.C.J. Raju, J. Mater. Sci. 27, 3175 (2016)

    Google Scholar 

  9. R. Siddheswaran, P. Šutta, P. Novák, A. Hendrych, O. Životský, Ceram. Int. 42, 3887 (2015)

    Google Scholar 

  10. M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Nanomat. 9, 18 (2019)

    Google Scholar 

  11. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomat. 9, 13 (2019)

    Google Scholar 

  12. A.P.A. Moraes, A.G.S. Filho, P.T.C. Freire, J.M. Filho, J.C.M. Peko, J. Appl. Phys. 109, 124102 (2011)

    ADS  Google Scholar 

  13. S.P. Culver, V. Stepanov, M. Mecklenburg, S. Takahashi, R.L. Brutchey, Chem. Commun. 50, 3480 (2014)

    Google Scholar 

  14. T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, T. Sato, J. Eur. Ceram. Soc. 33, 1009 (2013)

    Google Scholar 

  15. X. Liu, M. Zhu, Z. Chen, B. Fang, J. Ding, X. Zhao, Xu Haiqing, Haosu Luo J. Alloy. Compd. 613, 219 (2014)

    Google Scholar 

  16. T.D. Dunbar, W.L. Warren, B.A. Tuttle, C.A. Randall, Y. Tsur, J. Phys. Chem. B. 108, 908 (2004)

    Google Scholar 

  17. M.D. Glinchuk, I.P. Bykov, S.M. Kornienko, V.V. Laguta, A.M. Slipenyuk, A.G. Bilous, O.I. Vyunov, O.Z. Yanchevskiib, J. Mater. Chem. 10, 941 (2000)

    Google Scholar 

  18. M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, J. Phys. B. 34, 41126 (2013)

    Google Scholar 

  19. M.S. Alkathy, R. Gayam, B.K. Hazra, K.C.J. Raju, Ceram. Int. 43, 4937 (2017)

    Google Scholar 

  20. M.S. Alkathy, K.C.J. Raju, J. Magn. Magn. Mater. 452, 40 (2018)

    ADS  Google Scholar 

  21. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, J. Phys. B. 405, 99 (2010)

    Google Scholar 

  22. D.F. Shao, J. Yang, H.B. Jian, X.B. Zhu, Y.P. Sun, J. Appl. Phys. 113, 063902 (2013)

    ADS  Google Scholar 

  23. S.K. Ghosh, S.K. Rout, Curr. Appl. Phys. 16, 989 (2016)

    ADS  Google Scholar 

  24. U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, Appl. Phys. Lett. 91, 062908 (2007)

    ADS  Google Scholar 

  25. P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, J. Alloy. Compd. 695, 2870 (2017)

    Google Scholar 

  26. V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Crystallogr. Rep. 60, 635 (2015)

    ADS  Google Scholar 

  27. H. Zhan, X. Jiang, M. Zhu, X. Li, Z. Luo, K. Shu, J. Crys. Gro. 433, 80 (2016)

    ADS  Google Scholar 

  28. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J Alloy. Compd. 579, 473 (2013)

    Google Scholar 

  29. K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A.P.B. Selvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol-Gel Sci. Tech. 88, 584 (2018)

    Google Scholar 

  30. S.V. Trukhanov, JETP 101, 520 (2005)

    ADS  Google Scholar 

  31. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 9 (2008)

    Google Scholar 

  32. N. Sharma, A. Gaura, U.K. Gaur, J. Ceram. Int. 40, 16441 (2014)

    Google Scholar 

  33. M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón, J. Lumin. 179, 280 (2016)

    Google Scholar 

  34. L.V. Maneeshya, P.V. Thomas, K. Joy, J. Opt. Mat. 46, 304 (2015)

    Google Scholar 

  35. L.V. Maneeshya, S.S. Lekshmy, P.V. Thomas, K. Joy, J. Mater. Sci. Mater. Electron. 25, 2507 (2014)

    Google Scholar 

  36. M. Borah, D. Mohanta, J. Appl. Phys. 112, 124321 (2012)

    ADS  Google Scholar 

  37. J.L.H. Clabel, V.A.G. Rivera, I.C. Nogueira, E.R. Leited, M.A. Pereira-da-Silva, M Siu Lia, E Marega. J. Lumin. 192, 969 (2017)

    Google Scholar 

  38. T. Kolodiazhnyi, A. Petric, J. Phys. Chem. Solids 64, 953 (2003)

    ADS  Google Scholar 

  39. Lu Da-Yong, Y.-Y. Peng, Yu. Xin-Yu, X.-Y. Sun, J. Alloy. Compd. 681, 128 (2016)

    Google Scholar 

  40. I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, J. Phys. Condens. Matter. 12, 158 (2000)

    Google Scholar 

  41. S.V. Trukhanov, JETP 100, 105 (2005)

    ADS  Google Scholar 

  42. G.R. Gajula, K.N.C. Kumar, L.R. Buddiga, G.P. Nethala, Results Phys. 11, 899 (2018)

    ADS  Google Scholar 

  43. B.D. Stojanović, V.R. Mastelaro, C.O.P. Santos, J.A. Varela, Sci. Sinter. 36, 179 (2004)

    Google Scholar 

  44. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 135 (2018)

    ADS  Google Scholar 

  45. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloy. Compd. 754, 256 (2018)

    Google Scholar 

  46. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Ceram Int. 44, 13529 (2018)

    Google Scholar 

  47. Y. Wang, Pu Yongping, P. Zhang, J. Alloy. Compd. 653, 596 (2015)

    Google Scholar 

  48. S.B. Aziz, R.M. Abdullah, M.F.Z. Kadir, H.M. Ahmed, Electrochim. Acta 296, 494 (2019)

    Google Scholar 

  49. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 16 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Murugaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhan, K., Murugaraj, R. Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics. Appl. Phys. A 126, 97 (2020). https://doi.org/10.1007/s00339-020-3285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3285-2

Keywords

Navigation