Skip to main content
Log in

Activation of BDNF-AS/ADAR/p53 Positive Feedback Loop Inhibits Glioblastoma Cell Proliferation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Despite progress in conventional treatment for glioblastoma (GBM), the prognosis remains poor due to high tumor recurrence. Therefore, identification of new molecular mechanisms is a pressing need for betterment of GBM patient outcomes. qRT-PCR was used to determine BDNF-AS expression in GBM cells. CCK-8, EdU incorporation, and caspase-3 activity assays were employed to analyze biological functions of BDNF-AS. RIP and RNA pull-down were conducted to detect the interactions among BDNF-AS, ADAR, and p53. Actinomycin D was utilized to examine the stability of p53 mRNA. ChIP and luciferase reporter assays were performed to detect transcriptional activation of BDNF-AS by p53. We found that BDNF-AS was significantly downregulated in GBM cell lines, and its overexpression inhibited GBM cell growth, and promoted apoptosis. Importantly, we illustrated that BDNF-AS coupled with ADAR protein to potentiate stability of p53 mRNA and thus upregulate p53. Interestingly, we further identified p53 as a transcription factor of BDNF-AS, activating transcription of BNDF-AS. This study firstly demonstrated that BDNF-AS acted as a tumor suppressor in GBM and the positive feedback circuit of BDNF-AS/ADAR/p53 served an important mechanism to control GBM proliferation. Targeting this auto-regulatory loop may provide a potential therapeutic strategy for GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67:7–30

    PubMed  Google Scholar 

  3. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283

    PubMed  Google Scholar 

  4. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C, Li X, Chen L, Qiu X, Wang W, Li W, Yao Y, Li S, Li S, Wu A, Sai K, Bai H, Li G, Chen B, Yao K, Wei X, Liu X, Zhang Z, Dai Y, Lv S, Wang L, Lin Z, Dong J, Xu G, Ma X, Cai J, Zhang W, Wang H, Chen L, Zhang C, Yang P, Yan W, Liu Z, Hu H, Chen J, Liu Y, Yang Y, Wang Z, Wang Z, Wang Y, You G, Han L, Bao Z, Liu Y, Wang Y, Fan X, Liu S, Liu X, Wang Y, Wang Q (2016) CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 375:263–273

    CAS  PubMed  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    PubMed  Google Scholar 

  6. Chai RC, Zhang KN, Liu YQ, Wu F, Zhao Z, Wang KY, Jiang T (2019) Combinations of four or more CpGs methylation present equivalent predictive value for MGMT expression and temozolomide therapeutic prognosis in gliomas. CNS Neurosci Ther 25:314–322

    CAS  PubMed  Google Scholar 

  7. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850

    CAS  PubMed  Google Scholar 

  8. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol 1:97–117

    CAS  PubMed  Google Scholar 

  9. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127–4136

    CAS  PubMed  Google Scholar 

  10. Miller JJ, Wen PY (2016) Emerging targeted therapies for glioma. Expert opinion on emerging drugs 21:441–452

    CAS  PubMed  Google Scholar 

  11. Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339:159–166

    CAS  PubMed  Google Scholar 

  12. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    CAS  PubMed  Google Scholar 

  13. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192:226–234

    CAS  PubMed  Google Scholar 

  15. Zheng X, Lin C, Li Y, Ye J, Zhou J, Guo P (2016) Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons. Biomed Pharmacother 82:722–728

    CAS  PubMed  Google Scholar 

  16. Li Y, Xu F, Xiao H, Han F (2018) Long noncoding RNA BDNF-AS inversely regulated BDNF and modulated high-glucose induced apoptosis in human retinal pigment epithelial cells. J Cell Biochem 119:817–823

    CAS  PubMed  Google Scholar 

  17. Zhao H, Diao C, Wang X, Xie Y, Liu Y, Gao X, Han J, Li S (2018) LncRNA BDNF-AS inhibits proliferation, migration, invasion and EMT in oesophageal cancer cells by targeting miR-214. J Cell Mol Med 22:3729–3739

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Li W, Dou Z, We S, Zhu Z, Pan D, Jia Z, Liu H, Wang X, Yu G (2018) Long noncoding RNA BDNF-AS is associated with clinical outcomes and has functional role in human prostate cancer. Biomed Pharmacother 102:1105–1110

    CAS  PubMed  Google Scholar 

  19. Zhang H, Liu C, Yan T, Wang J, Liang W (2018) Long noncoding RNA BDNF-AS is downregulated in cervical cancer and has anti-cancer functions by negatively associating with BDNF. Arch Biochem Biophys 646:113–119

    CAS  PubMed  Google Scholar 

  20. Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA, Eisenberg E, Levanon EY (2015) Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep 13:267–276

    CAS  PubMed  Google Scholar 

  21. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    CAS  PubMed  Google Scholar 

  22. Galeano F, Tomaselli S, Locatelli F, Gallo A (2012) A-to-I RNA editing: the "ADAR" side of human cancer. Semin Cell Dev Biol 23:244–250

    CAS  PubMed  Google Scholar 

  23. Slotkin W, Nishikura K (2013) Adenosine-to-inosine RNA editing and human disease. Genome Med 5:105

    PubMed  PubMed Central  Google Scholar 

  24. Chan TH, Qamra A, Tan KT, Guo J, Yang H, Qi L, Lin JS, Ng VH, Song Y, Hong H, Tay ST, Liu Y, Lee J, Rha SY, Zhu F, So JB, Teh BT, Yeoh KG, Rozen S, Tenen DG, Tan P, Chen L (2016) ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology 151:637–650

    Google Scholar 

  25. Fritzell K, Xu LD, Lagergren J, Ohman M (2018) ADARs and editing: the role of A-to-I RNA modification in cancer progression. Semin Cell Dev Biol 79:123–130

    CAS  PubMed  Google Scholar 

  26. Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-awar R, Katona BW, Shilatifard A, Huang J, Hua X, Arrowsmith CH, Berger SL (2015) Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–211

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G, Soussi T (2013) The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res 41:D962–D969

    CAS  PubMed  Google Scholar 

  29. Liu S, Jiang T, Zhong Y, Yu Y (2019) miR-210 inhibits cell migration and invasion by targeting the brain-derived neurotrophic factor in glioblastoma. J Cell Biochem. https://doi.org/10.1002/jcb.28414

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chai Y, Liu J, Zhang Z, Liu L (2016) HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med 5:1588–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Wang Y, Hu R, Xu R, Xu W (2018) LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity. Cell Prolif 51:e12504

    PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48:R45–R53

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shang W, Yang Y, Zhang J, Wu Q (2018) Long noncoding RNA BDNF-AS is a potential biomarker and regulates cancer development in human retinoblastoma. Biochem Biophys Res Commun 497:1142–1148

    CAS  PubMed  Google Scholar 

  34. Wang Y, Zheng Y, Beal PA (2017) Adenosine deaminases that act on RNA (ADARs). Enzymes 41:215–268

    CAS  PubMed  Google Scholar 

  35. Tomaselli S, Locatelli F, Gallo A (2014) The RNA editing enzymes ADARs: mechanism of action and human disease. Cell Tissue Res 356:527–532

    CAS  PubMed  Google Scholar 

  36. Amin EM, Liu Y, Deng S, Tan KS, Chudgar N, Mayo MW, Sanchez-Vega F, Adusumilli PS, Schultz N, Jones DR (2017) The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci Signal. https://doi.org/10.1126/scisignal.aah3941

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Wang K, Zhao Z, Sun S, Zhang K, Huang R, Zeng F, Hu H (2018) ADAR3 expression is an independent prognostic factor in lower-grade diffuse gliomas and positively correlated with the editing level of GRIA2 (Q607R). Cancer Cell Int 18:196

    PubMed  PubMed Central  Google Scholar 

  38. Checler F, Alves da Costa C (2014) p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 142:99–113

    CAS  PubMed  Google Scholar 

  39. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer's disease. Biochem Biophys Res Commun 232:418–421

    CAS  PubMed  Google Scholar 

  40. Al-Rugeebah A, Alanazi M, Parine NR (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 25:859–874

    CAS  PubMed  Google Scholar 

  41. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    PubMed  PubMed Central  Google Scholar 

  42. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    CAS  PubMed  Google Scholar 

  43. Preca BT, Bajdak K, Mock K, Lehmann W, Sundararajan V, Bronsert P, Matzge-Ogi A, Orian-Rousseau V, Brabletz S, Brabletz T, Maurer J, Stemmler MP (2017) A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8:11530–11543

    PubMed  PubMed Central  Google Scholar 

  44. Ling Z, Wang X, Tao T, Zhang L, Guan H, You Z, Lu K, Zhang G, Chen S, Wu J, Qian J, Liu H, Xu B, Chen M (2017) Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. J Exp Clin Cancer Res 36:159

    PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Bao C, Zhang X, Lin X, Huang H, Wang Z (2019) Long non-coding RNA HCG11 modulates glioma progression through cooperating with miR-496/CPEB3 axis. Cell Prolif 52:e12615

    PubMed  PubMed Central  Google Scholar 

  46. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, Chang Z (2019) The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci 15:1460–1471

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have a deep gratitude towards all lab members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwen Guo.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Gu, C. & Guo, S. Activation of BDNF-AS/ADAR/p53 Positive Feedback Loop Inhibits Glioblastoma Cell Proliferation. Neurochem Res 45, 508–518 (2020). https://doi.org/10.1007/s11064-019-02943-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02943-w

Keywords

Navigation