Skip to main content
Log in

Simplified sol-gel processing method for amorphous TiOx Memristors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The memristor, a two-terminal memory device with units of resistance, has continued to gain momentum as simpler and more versatile memristive devices are discovered. Amorphous metal-oxide devices have emerged as potential replacements for organic and silicon materials in thin-film electronics. This work presents memristive devices based on amorphous TiOx which were synthesized using a simplified sol-gel process that does not require a dry nitrogen flow step to fabricate amorphous films of titanium oxide (TiOx) for memristive devices. This simplified process significantly decreases the cost and complexity of the fabrication of memristive devices. The memristive behavior was characterized by I-V curves and read-write sequential pulses. We report on the effects of different TiOx layers on I-V curve behavior, stability, aging of the devices as well as the influence of interfaces and electrode materials in the memristive properties. Devices made as a stack of copper electrode, different TiOx layers and aluminum electrode showed best results for on/off ratio than other devices in this work, as well better stability of resistive switching properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092

    Article  Google Scholar 

  2. L. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9

    Article  CAS  Google Scholar 

  3. E. Gale, TiO2 -based memristors and ReRAM: Materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014). https://doi.org/10.1088/0268-1242/29/10/104004

    Article  CAS  Google Scholar 

  4. S.G. Hu, S.Y. Wu, W.W. Jia, et al., Review of nanostructured resistive switching Memristor and its applications. Nanosci. Nanotechnol. Lett. 6, 729–757 (2014). https://doi.org/10.1166/nnl.2014.1888

    Article  Google Scholar 

  5. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  6. H. Nili, S. Walia, S. Balendhran, et al., Nanoscale resistive switching in amorphous Perovskite oxide (a-SrTiO3) Memristors. Adv. Funct. Mater. 24, 6741–6750 (2014). https://doi.org/10.1002/adfm.201401278

    Article  CAS  Google Scholar 

  7. F. Argall, Switching phenomena in titanium oxide thin films. Solid State Electron. 11, 535–541 (1968). https://doi.org/10.1016/0038-1101(68)90092-0

    Article  CAS  Google Scholar 

  8. J.Y. Kim, S.H. Kim, H.-H. Lee, et al., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006). https://doi.org/10.1002/adma.200501825

    Article  CAS  Google Scholar 

  9. N. Gergel-Hackett, B. Hamadani, B. Dunlap, et al., A flexible solution-processed Memristor. IEEE Electron Device Lett. 30, 706–708 (2009). https://doi.org/10.1109/LED.2009.2021418

    Article  CAS  Google Scholar 

  10. X. Tang, Crack-free TiO2 thin films with selfassembling nano-particles fabricated through in-situ sol–gel processing in reverse micelles. Surf. Coat. Technol. 221, 37–43 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.025

    Article  CAS  Google Scholar 

  11. Ü.Ö.A. Arıer, F.Z. Tepehan, Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by sol–gel method. Surf. Coat. Technol. 206, 37–42 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.039

    Article  CAS  Google Scholar 

  12. L. Ge, M.X. Xu, M. Sun, Synthesis and characterization of TiO2 photocatalytic thin films prepared from refluxed PTA sols. Mater. Lett. 60, 287–290 (2006). https://doi.org/10.1016/j.matlet.2005.08.036

    Article  CAS  Google Scholar 

  13. D. Chen, E.H. Jordan, M. Gell, M. Wei, Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process. Acta Biomater. 4, 553–559 (2008). https://doi.org/10.1016/j.actbio.2007.11.008

    Article  CAS  Google Scholar 

  14. M.A. Mamun, A.H. Chowdhury, K. Chen, et al., Rapid and low-temperature processing of Mesoporous and Nanocrystalline TiO2 film using microwave irradiation. ACS Appl. Energy Mater. 1, 6288–6294 (2018). https://doi.org/10.1021/acsaem.8b01287

    Article  CAS  Google Scholar 

  15. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489(7414), 128–132 (2012). https://doi.org/10.1038/nature11434

    Article  CAS  Google Scholar 

  16. E. Gale, R. Mayne, A. Adamatzky, B.D. Costello, Drop-coated titanium dioxide memristors. Mater. Chem. Phys. 143, 524–529 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.013

    Article  CAS  Google Scholar 

  17. H. Abunahla, M.A. Jaoude, C.J. O’Kelly, B. Mohammad, Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Mater. Chem. Phys. 184, 72–81 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.027

    Article  CAS  Google Scholar 

  18. S.K. Tripathi, R. Kaur, H. Kaur, et al., Fabrication and electrical characterization of memristor with TiO2 as an active layer. AIP Conf. Proc. 1661, 110027 (2015). https://doi.org/10.1063/1.4915472

    Article  CAS  Google Scholar 

  19. J.H. Park, D.S. Jeon, T.G. Kim, Improved uniformity in the switching characteristics of ZnO-based memristors using Ti sub-oxide layers. J. Phys. D. Appl. Phys. 50, 015104 (2016). https://doi.org/10.1088/1361-6463/50/1/015104

    Article  CAS  Google Scholar 

  20. K.M. Kim, J.M. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, R.S. Williams, Low-power, self-rectifying, and forming-free Memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16(11), 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781

    Article  CAS  Google Scholar 

  21. M. Cernea, O. Monnereau, P. Llewellyn, et al., Sol–gel synthesis and characterization of Ce doped-BaTiO3. J. Eur. Ceram. Soc. 26, 3241–3246 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.039

    Article  CAS  Google Scholar 

  22. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories – Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). https://doi.org/10.1002/adma.200900375

    Article  CAS  Google Scholar 

  23. I. Abraham, An advection-diffusion model for the vacancy migration Memristor. IEEE Access 4, 7747–7757 (2016). https://doi.org/10.1109/access.2016.2621721

    Article  Google Scholar 

  24. L. Alekseeva, T. Nabatame, T. Chikyow, A. Petrov, Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers. Jpn. J. Appl. Phys. 55, 08PB02 (2016). https://doi.org/10.7567/JJAP.55.08PB02

    Article  CAS  Google Scholar 

  25. J. Lappalainen, J. Mizsei, M. Huotari, Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. J. Appl. Phys. 125, 044501 (2019). https://doi.org/10.1063/1.5037990

    Article  CAS  Google Scholar 

  26. N. S. M. Hadis, A. A. Manaf, S. H. Herman and S. H. Ngalim, High Roff/Ron ratio liquid based memristor sensor using sol gel spin coating technique, 2015 IEEE SENSORS, Busan, 2015, pp. 1–4. https://doi.org/10.1109/ICSENS.2015.7370379

  27. M.D. Pickett, D.B. Strukov, J.L. Borghetti, et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 74508 (2009). https://doi.org/10.1063/1.3236506

    Article  CAS  Google Scholar 

  28. M. Cölle, M. Büchel, D.M. de Leeuw, Switching and filamentary conduction in non-volatile organic memories. Org. Electron. 7, 305–312 (2006). https://doi.org/10.1016/j.orgel.2006.03.014

    Article  CAS  Google Scholar 

  29. F. Pan, C. Chen, Z. Wang, et al., Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Pro. Nat. Sci. Mater. Int. 20, 1–15 (2010). https://doi.org/10.1016/S1002-0071(12)60001-X

    Article  Google Scholar 

  30. L. Yang, C. Kuegeler, K. Szot, et al., The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy. Appl. Phys. Lett. 95, 013109 (2009). https://doi.org/10.1063/1.3167810

    Article  CAS  Google Scholar 

  31. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108 (2009). https://doi.org/10.1063/1.3251784

    Article  CAS  Google Scholar 

  32. X.-J. Zhu, J. Shang, R.-W. Li, Resistive switching effects in oxide sandwiched structures. Front. Mater. Sci. 6(3), 183–206 (2012). https://doi.org/10.1007/s11706-012-0170-8

    Article  Google Scholar 

  33. T.D. Dongale, K.V. Khot, S.S. Mali, et al., Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Mater. Sci. Semicond. Process. 40, 523–526 (2015). https://doi.org/10.1016/j.mssp.2015.07.004

    Article  CAS  Google Scholar 

  34. Y. Khrapovitskaya, N. Maslova, I. Sokolov, et al., The titanium oxide memristor contact material’s influence on element’s cyclic stability to degradation. Phys. Status Solidi C 12, 202–205 (2015). https://doi.org/10.1002/pssc.201400109

    Article  CAS  Google Scholar 

  35. B. Mohammad, M.A. Jaoude, V. Kumar, et al., State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5, 311–329 (2016). https://doi.org/10.1515/ntrev-2015-0029

    Article  CAS  Google Scholar 

  36. B.P.S. Rathore, R. Prakash, D. Kaur, Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices. Curr. Appl. Phys. 18, 102–106 (2018). https://doi.org/10.1016/j.cap.2017.10.005

    Article  Google Scholar 

  37. Y.H. Do, J.S. Kwak, J.P. Hong, et al., Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films. J. Appl. Phys. 104, 114512 (2008). https://doi.org/10.1063/1.3032896

    Article  CAS  Google Scholar 

  38. Y.C. Bae, A.R. Lee, J.S. Kwak, et al., Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2−x/Pt matrix. Curr. Appl. Phys. 11, e66–e69 (2011). https://doi.org/10.1016/j.cap.2010.11.125

    Article  Google Scholar 

  39. Z. Yan, Y. Guo, G. Zhang, J.-M. Liu, High-performance programmable memory devices based on co-doped BaTiO3. Adv. Mater. 23(11), 1351–1355 (2011). https://doi.org/10.1002/adma.201004306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Everaldo N. Moreira was supported by Sao Paulo Research Foundation (FAPESP) (proc. 2015/07316-9). This work was partially supported by the US National Science Foundation (NSF ENG ECCS 1709641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everaldo Nassar Moreira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar Moreira, E., Kendall, J., Maruyama, H. et al. Simplified sol-gel processing method for amorphous TiOx Memristors. J Electroceram 44, 52–58 (2020). https://doi.org/10.1007/s10832-019-00198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00198-z

Keywords

Navigation