Skip to main content

Advertisement

Log in

Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A low consumption and facile method was employed to prepare hollow nickel–cobalt-layered double hydroxide (NiCo-LDH) nanoflakes grown in situ on nickel foam in deionized water at room temperature. By using MOFs (Metal–organic frameworks) as the precursor and then adjusting the Ni2+ ion exchange reaction time, the surface morphology and electrochemical performance of NiCo-LDH electrode materials can be greatly optimized. NiCo-LDH nanoflakes with a thickness of 150 nm as electrode material have a high specific capacity of 2148 F/g at the current density of 1 A/g and possess cycling stability of 82% capacity retention after 1000 cycles. This study provides a prominent approach for fabricating hollow nanomaterials with three-dimensional structures, and its excellent electrochemical performances make it a promising candidate for low energy consumption and high-performance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Y. Gong, H. Pan, Z. Xu et al., Int. J. Hydrogen Energy 31, 14360–14368 (2018)

    Google Scholar 

  2. H. Su, Y.F. Xu, S.Y. Shen et al., J. Energy Chem. 27, 1637–1643 (2018)

    Google Scholar 

  3. P. Ge, C. Zhang, H. Hou et al., Nano Energy 48, 617–629 (2018)

    CAS  Google Scholar 

  4. M. Lan, R. Guo, Y. Dou, J. Zhou, A. Zhou, J. Li, Nano Energy 33, 238–246 (2017)

    CAS  Google Scholar 

  5. W. Zhan, L. Sun, X. Han, Nano-Micro Lett. 11, 1 (2019)

    CAS  Google Scholar 

  6. C. Jiao, Z. Wang, X. Zhao et al., Angew. Chem. Int. Ed. 57, 1–6 (2018)

    Google Scholar 

  7. X. Cao, Z. Han, Chem. Commun. 55, 1746–1749 (2019)

    CAS  Google Scholar 

  8. R. Lina, H. Leia, D. Ruana et al., Nano Energy 56, 82–91 (2019)

    Google Scholar 

  9. A. González, E. Goikole, J.A. Barrena et al., Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Google Scholar 

  10. W. Raza, F. Ali, N. Raza et al., Nano Energy 52, 441–473 (2018)

    CAS  Google Scholar 

  11. F. Cao, M. Gan, L. Ma et al., Synth. Met. 234, 154–160 (2017)

    CAS  Google Scholar 

  12. L. Li, J. Xu, J. Lei et al., J. Mater. Chem. A 3, 1953–1960 (2015)

    CAS  Google Scholar 

  13. H. Niu, Y. Zhang, Y. Liu et al., J. Colloid Interface Sci. 539, 545–552 (2019)

    CAS  Google Scholar 

  14. Y. Du, R.Z. Chen, J.F. Yao et al., Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. J. Alloys Compd. 551, 125–130 (2013)

    CAS  Google Scholar 

  15. X. Han, X. He, F. Wang et al., J. Mater. Chem. A 5(21), 10220–10226 (2017)

    CAS  Google Scholar 

  16. B. Ma, P.Y. Guan, Q.Y. Li et al., ACS Appl. Mater. Interfaces 8(40), 26794–26800 (2016)

    CAS  Google Scholar 

  17. J.W. Lee, J.M. Ko, J.D. Kim, J. Phys. Chem. C 115, 19445 (2011)

    CAS  Google Scholar 

  18. Y. Wang, S. Gai, C. Li et al., Electrochim. Acta 90, 673 (2013)

    CAS  Google Scholar 

  19. G.S. Gund, D.P. Dubal, S.B. Jambure et al., J. Mater. Chem. A 1, 4793 (2013)

    CAS  Google Scholar 

  20. Y. Chen, B. Qu, L. Hu et al., Nanoscale 5, 9812 (2013)

    CAS  Google Scholar 

  21. Z. Lu, Z. Chang, W. Zhu et al., Chem. Commun. 47, 9651 (2011)

    CAS  Google Scholar 

  22. H. Ma, J. He, D.B. Xiong et al., ACS Appl. Mater. Interfaces 8, 1992–2000 (2016)

    CAS  Google Scholar 

  23. D. Zha, P. Xiong, X. Wang, Electrochim. Acta 185, 218–228 (2015)

    CAS  Google Scholar 

  24. S. Zhang, Y. Zhu, X. Tang et al., J. Mater. Sci. 29, 20800–20807 (2018)

    CAS  Google Scholar 

  25. T. Wang, S. Zhang, X. Yan et al., ACS Appl. Mater. Interfaces 9, 15510–15524 (2017)

    CAS  Google Scholar 

  26. P. Wang, Y. Li, S. Li et al., J. Mater. Sci. 28, 9221–9227 (2017)

    CAS  Google Scholar 

  27. H. Hu, B.Y. Guan, B.Y. Xia et al., J. Am. Chem. Soc. 137, 5590 (2015)

    CAS  Google Scholar 

  28. C. Guan, X. Liu, W. Ren, Adv. Energy Mater. 7(12), 1602391 (2017)

    Google Scholar 

  29. L. Shen, L. Yu, H. Wu et al., Nat. Commun. 6, 6694 (2015)

    CAS  Google Scholar 

  30. G. Fang, J. Zhou, C. Liang et al., Nano Energy 26, 57–65 (2016)

    CAS  Google Scholar 

  31. J. Wang, J. Tang, B. Ding, Small 14, 1704461 (2018)

    Google Scholar 

  32. Z. Lv, Q. Zhong, Y. Bu, Adv. Mater. Interfaces 5, 1800438 (2018)

    Google Scholar 

  33. H. Chen, L. Hu, M. Chen et al., Adv. Funct. Mater. 24, 934–942 (2014)

    Google Scholar 

  34. H. Jin, D. Yuan, S. Zhu et al., Dalton Trans. 47, 8706–8715 (2018)

    CAS  Google Scholar 

  35. T. Guan, L. Fang, Y. Lu et al., Colloids and Surf. A 529, 907–915 (2017)

    CAS  Google Scholar 

  36. Y.M. Jeong, I. Son, S.H. Baek, Appl. Surf. Sci. 20, 963–967 (2019)

    Google Scholar 

  37. T. Yan, R. Li, Z. Li, Mater. Res. Bull. 51, 97–104 (2014)

    CAS  Google Scholar 

  38. T. Yan, R. Li, T. Yang et al., Electrochim. Acta 152, 530–537 (2015)

    Google Scholar 

  39. Z. Lv, Q. Zhong, Y. Bu, Electron. Mater. Lett. 12, 824–829 (2016)

    CAS  Google Scholar 

  40. H. Jia, Z. Wang, X. Zheng, Chem. Eng. J. 351, 348–355 (2018)

    CAS  Google Scholar 

  41. J. Ji, L. Zhang, H. Ji et al., ACS Nano 7, 6237–6243 (2013)

    CAS  Google Scholar 

  42. S. Zhang, Y. Zhu, C. Kong et al., J. Mater. Sci. 30, 16000 (2019)

    CAS  Google Scholar 

  43. L. Mei, T. Yang, C. Xu et al., Nano Energy 3, 36–45 (2014)

    CAS  Google Scholar 

  44. D. Yu, B. Wu, J. Ran et al., J. Mater. Chem. A 4, 16953–16960 (2016)

    CAS  Google Scholar 

  45. D. Zha, H. Sun, Y. Fu et al., Electrochim. Acta 236, 18–27 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant Nos. 51505478 and 51705517) and the Fundamental Research Funds for the Central Universities (Grant No. 2013QNA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xu, F., Zhang, S. et al. Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials. J Mater Sci: Mater Electron 31, 3281–3288 (2020). https://doi.org/10.1007/s10854-020-02876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02876-z

Navigation