Skip to main content
Log in

Promoting effect of multi-transition metals on the NO reduction by NH3 over TiO2 catalyst studied with in situ DRIFTS

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

NOx is one of the most detrimental pollutants to the atmospheric and ecological environment. Currently, selective catalytic reduction (SCR) of NOx by NH3 was conducted by transition metals-doped (Mo, Ce, Cu, Fe, W, and Zr, including P) TiO2 catalysts through orthogonal experimental design. It was found that Mo, Cu, Fe, and Zr significantly affected the catalytic activity, while Mo showed the highest impact. The optimum amounts of Mo, Ce, Cu, Fe, W, P, and Zr were 1.5 wt%, 2 wt%, 6 wt%, 4 wt%, 0 wt%, 0.9 wt%, and 4 wt%, respectively. The catalysts’ redox properties and adsorption capacity for NO were key factors affecting the catalytic activity. Proper amounts of adsorbed oxygen, together with appropriate adsorption capacity for NO and acidity distribution, were beneficial for the formation of intermediates. The mechanistic cause of the promoting effect of metal oxides for NH3-SCR was studied using in situ DRIFTS. These results revealed that the addition of metal oxides is to promote the adsorption and activation of NH3 on the catalyst surface, which is beneficial for the promotion of SCR activity.

Graphic abstract

Promoting effect of multi-transition metals was confirmed for the selective catalytic reduction of NO by NH3 over TiO2 following the order of Mo > Fe ≈ Zr > Cu > W>P > Ce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Zhao, R. Hao, P. Zhang, S. Zhou, Energy Fuels 28, 6502 (2014)

    Article  CAS  Google Scholar 

  2. G. Gao, J.W. Shi, C. Liu, C. Gao, Z. Fan, C. Niu, Appl. Surf. Sci. 411, 338 (2017)

    Article  CAS  Google Scholar 

  3. P. Granger, V.I. Parvulescu, Chem. Rev. 111, 3155 (2011)

    Article  CAS  Google Scholar 

  4. C.A. Sierra-Pereira, E.A. Urquieta-González, Fuel 118, 137 (2014)

    Article  CAS  Google Scholar 

  5. S.X. Zhuang, M. Yamazaki, K. Omata, Y. Takahashi, M. Yamada, Appl. Catal. B 31, 133 (2001)

    Article  CAS  Google Scholar 

  6. A.Y. Stakheev, A.I. Mytareva, D.A. Bokarev, G.N. Baeva, D.S. Krivoruchenko, A.L. Kustov, M. Grill, J.R. Thøgersen, Catal. Today 258, 183 (2015)

    Article  CAS  Google Scholar 

  7. M. Salazara, S. Hoffmannb, L. Tillmann, V. Singer, R. Becker, W. Grünert, Appl. Catal., B 218, 793 (2017)

    Article  Google Scholar 

  8. M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh, J. Catal. 260, 205 (2008)

    Article  CAS  Google Scholar 

  9. M. Salazar, R. Becker, W. Grünert, Appl. Catal. B 165, 316 (2015)

    Article  CAS  Google Scholar 

  10. J.K. Lai, I.E. Wachs, ACS Catal. 8, 6537 (2018)

    Article  CAS  Google Scholar 

  11. H. Huang, W. Shan, S. Yang, J. Zhang. Catal. Sci. Technol. 4, 3611 (2014)

    Article  CAS  Google Scholar 

  12. G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18, 1 (1998)

    Article  CAS  Google Scholar 

  13. Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Appl. Catal. B 179, 380 (2015)

    Article  CAS  Google Scholar 

  14. J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, Appl. Catal. B 95, 144 (2010)

    Article  CAS  Google Scholar 

  15. M. Jabłońska, R. Palkovits, Appl. Catal. B 181, 332 (2016)

    Article  Google Scholar 

  16. Y. Li, H. Xu, X. Feng, S. Liu, Y. Chen, Can. J. Chem. Eng. 96, 1168 (2018)

    Article  CAS  Google Scholar 

  17. K. Cheng, W. Song, Y. Cheng, H. Zheng, L. Wang, J. Liu, Z. Zhao, Y. Wei, RSC Adv. 8, 19301 (2018)

    Article  CAS  Google Scholar 

  18. Z. Liu, S. Zhang, J. Li, L. Ma, Appl. Catal. B 144, 90 (2014)

    Article  CAS  Google Scholar 

  19. S. Liu, M. Sun, Q. Lin, H. Xu, J. Wang, Y. Chen, Can. J. Chem. Eng. 97, 1274 (2018).

    Article  Google Scholar 

  20. Q. Zhang, J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, Appl. Surf. Sci. 435, 1037 (2018)

    Article  CAS  Google Scholar 

  21. Z. Si, D. Weng, X. Wu, R. Ran, Z. Ma, Catal. Commun. 17, 146 (2012)

    Article  CAS  Google Scholar 

  22. J. Yu, Z. Si, L. Chen, X. Wu, D. Weng, Appl. Catal. B 163, 223 (2015)

    Article  CAS  Google Scholar 

  23. B. Chen, R. Xu, R. Zhang, N. Liu, Environ. Sci. Technol. 48, 13909 (2014)

    Article  CAS  Google Scholar 

  24. L. Gao, X. Li, H. Hu, G. Li, H. Liu, Y. Yu, Electrochim. Acta 120, 231 (2014)

    Article  CAS  Google Scholar 

  25. F. He, J. Li, T. Li, G. Li, Chem. Eng. J. 237, 312 (2014)

    Article  CAS  Google Scholar 

  26. C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010)

    Article  CAS  Google Scholar 

  27. M. Logar, B. Jančar, S. Šturm, D. Suvorov, Langmuir 26, 12215 (2010)

    Article  CAS  Google Scholar 

  28. A. Adamski, Z. Sojka, Catal. Today 137, 283 (2008)

    Article  CAS  Google Scholar 

  29. M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 27, 145 (2000)

    Article  Google Scholar 

  30. L. Liang, S. Hu, S. Pan, T. Shang, C. Liu, D. Wang, Fuel 120, 38 (2014)

    Article  CAS  Google Scholar 

  31. G. Qi, R.T. Yang, R. Chang, Appl. Catal. B 51, 93 (2004)

    Article  CAS  Google Scholar 

  32. Y. Jiang, Z. Xing, X. Wang, S. Huang, X. Wang, Q. Liu, Fuel 151, 124 (2015)

    Article  CAS  Google Scholar 

  33. L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187, 419 (1999)

    Article  CAS  Google Scholar 

  34. H. Zhu, J.H. Kwak, C.H.F. Peden, J. Szanyi. Catal. Today 205, 16 (2013)

    Article  CAS  Google Scholar 

  35. D. Wang, L. Zhang, K. Kamasamudram, W.S. Epling, ACS Catal. 3, 871 (2013)

    Article  CAS  Google Scholar 

  36. M. Rivallan, G. Ricchiardi, S. Bordiga, A. Zecchina, J. Catal. 264, 104 (2009)

    Article  CAS  Google Scholar 

  37. Q. Li, H. Gu, P. Li, Y. Zhou, Y. Liu, Z. Qi, Y. Xin, Z. Zhang, Chin. J. Catal. 35, 1289 (2014)

    Article  CAS  Google Scholar 

  38. X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, Y. Chen, Appl. Catal. B 150–151, 315 (2014)

    Article  Google Scholar 

  39. Y. Yu, J. Chen, J. Wang, Y. Chen, Chin. J. Catal. 37, 281 (2016)

    Article  CAS  Google Scholar 

  40. M. Anstrom, N.Y. Topsoe, J.A. Dumesic, J. Catal. 213, 115 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (U1662103, 21673290, and 21908009), Beijing Natural Science Foundation (2184101), and Beijing Science and Technology Planning Project (KM201810017001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X., He, M. et al. Promoting effect of multi-transition metals on the NO reduction by NH3 over TiO2 catalyst studied with in situ DRIFTS. Res Chem Intermed 46, 1663–1684 (2020). https://doi.org/10.1007/s11164-019-04055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04055-0

Keywords

Navigation