Skip to main content

Advertisement

Log in

Dense Mytilus Beds Along Freshwater-Influenced Greenland Shores: Resistance to Corrosive Waters Under High Food Supply

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Arctic calcifiers are believed to be particularly vulnerable to ocean acidification as the Arctic already experiences low carbonate saturations states due to low temperature and high inputs of freshwater. Here, we report the finding of dense beds of Mytilus growing in tidal lagoons and river mouths, where the availability of carbonate ions is remarkably low Ωarag < 0.5. Although these Mytilus grow in the intertidal zone, and therefore are covered by seawater during high tide, δ18O isotopes of shell carbonate were low − 2.48 ± 0.05‰, confirming that their shells were deposited under low salinity conditions, i.e., reflecting a contribution from 18O-depleted freshwater. δ18O isotopes of shell carbonate became heavier with increasing salinity, with mean values of − 0.74 ± 0.96‰ for Mytilus growing in tidal pools. We calculated, based on δ18O isotopic composition standardized to a common temperature, that freshwater accounted for 7% of the carbonate oxygen in the shells of Mytilus at the habitats with near full-strength seawater salinity compared with 25% in shells collected at sites temporarily exposed to freshwater. The composition of the periostracum revealed a trend for shells from river mouths and brackish tidal lagoons to be more depleted in polysaccharides than shells exposed to higher salinity. We conclude that the high food supply associated with riverine discharge allows Mytilus to cope with the low saturation states by using energy to calcify and modify their periostracum to protect the shells from dissolution. These findings suggest that Arctic Mytilus are highly resistant to low saturation states of carbon minerals if supplied with sufficient food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrigo, K.R., and G.L. van Dijken. 2015. Continued increases in Arctic Ocean primary production. Progress in Oceanography 136: 60–70. https://doi.org/10.1016/j.pocean.2015.05.002.

    Article  Google Scholar 

  • Bamber, J., M. den Broeke, J. Ettema, J. Lenaerts, and E. Rignot. 2012. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters 39: 19. https://doi.org/10.1029/2012GL052552.

    Article  Google Scholar 

  • Bhatia, M.P., S.B. Das, L. Xu, M.A. Charette, J.L. Wadham, and E.B. Kujawinski. 2013. Organic carbon export from the Greenland ice sheet. Geochimica et Cosmochimica Acta 109: 329–344. https://doi.org/10.1016/j.gca.2013.02.006.

    Article  CAS  Google Scholar 

  • Bechmann, R.K., J.C. Taban, S. Westerlund, B.F. Godal, M. Arnberg, S. Vingen, A. Ingvarsdottir, and T. Baussant. 2011. Effects of ocean acidification on early life stages of shrimp Pandalus borealis and mussel Mytilus edulis. Journal of Toxicology and Environmental Health, Part A 74 (7–9): 424–438. https://doi.org/10.1080/15287394.2011.550460.

    Article  CAS  Google Scholar 

  • Bubel, A. 1973. An electron-microscope study of periostracum repair in Mytilus edulis. Marine Biology 20: 235–244.

    Google Scholar 

  • Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Duarte, C.M., and D. Krause-Jensen. 2018. Greenland tidal pools as hot spots for community metabolism and calcification. Estuaries and Coasts 41 (5): 1314–1321. https://doi.org/10.1007/s12237-018-0368-9.

    Article  Google Scholar 

  • Duarte, C., J.M. Navarro, K. Acuña, R. Torres, P.H. Manríquez, M.A. Lardies, C.A. Vargas, N.A. Lagos, and V. Aguilera. 2015. Intraspecific variability in the response of the edible mussel Mytilus chilensis Hupe to ocean acidification. Estuaries and Coasts 382 (2): 590–598. https://doi.org/10.1007/s12237-014-9845-y.

    Article  CAS  Google Scholar 

  • Gazeau, F., J.-P. Gattuso, C. Dawber, A.E. Pronker, F. Peene, J. Peene, C.H.R. Heip, and J.J. Middelburg. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 77: 2051. https://doi.org/10.5194/bg-7-2051-2010.

    Article  CAS  Google Scholar 

  • Gray, M.W., C.J. Langdon, G.G. Waldbusser, B. Hales, and S. Kramer. 2017. Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Marine Ecology Progress Series 563: 81–94. https://doi.org/10.3354/meps11977.

    Article  CAS  Google Scholar 

  • Hasholt, B., and B. Hagedorn. 2000. Hydrology and geochemistry of river-borne material in a high arctic drainage system, Zackenberg, Northeast Greenland. Arctic Antarctic and Alpine Research 32: 84–94. https://doi.org/10.1080/15230430.2000.12003342.

    Article  Google Scholar 

  • Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 1311: 1419–1434. https://doi.org/10.1111/j.1461-0248.2010.01518.x.

    Article  Google Scholar 

  • Lawson, E.C., J.L. Wadham, M. Tranter, M. Stibal, G.P. Lis, C.E.H. Butler, J. Laybourn-Parry, P. Nienow, D. Chandler, and P. Dewsbury. 2014. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11: 4015–4028. https://doi.org/10.5194/bg-11-4015-2014.

    Article  Google Scholar 

  • Leng, M.J., and N.J. Anderson. 2003. Isotopic variation in modern lake waters from western Greenland. The Holocene 13: 605–611. https://doi.org/10.1191/0959683603hl620rr.

    Article  Google Scholar 

  • McConnaughey, T.A., and D.P. Gillikin. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–299. https://doi.org/10.1007/s00367-008-0116-4.

    Article  CAS  Google Scholar 

  • Mackenzie, C.L., S.A. Lynch, S.C. Culloty, and S.K. Malham. 2014. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L. PLoS One 96: e99712. https://doi.org/10.1371/journal.pone.0099712.

    Article  CAS  Google Scholar 

  • Mathiesen, S.S., J. Thyrring, J. Hemmer-Hansen, J. Berge, A. Sukhotin, P. Leopold, M. Bekaert, M.K. Sejr, and E.E. Nielsen. 2017. Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic. Evolutionary Applications 101 (1): 39–55. https://doi.org/10.1111/eva.12415.

    Article  Google Scholar 

  • McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics 18: 849–857.

    Article  CAS  Google Scholar 

  • Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18: 897–907.

    Article  CAS  Google Scholar 

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.E. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and R.M. Key. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059): 681. https://doi.org/10.1038/nature04095.

    Article  CAS  Google Scholar 

  • Peck, V.L., R.L. Oakes, E.M. Harper, C. Manno, and A.G. Tarling. 2018. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nature Communications 9: 264. https://doi.org/10.1038/s41467-017-02692-w.

    Article  CAS  Google Scholar 

  • Pierrot, D., D.E. Lewis, and D.W.R. Wallace. 2006. CO2SYS.EXE—MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a. http://cdiac.ornl.gov/ftp/co2sys/. Oak Ridge, Tennessee. Carbon Dioxide Information Center, Oak Ridge National Laboratory, U.S. Department of Energy.

  • Ramajo, L., L. Prado, A.B. Rodriguez-Navarro, M.A. Lardies, C.M. Duarte, and N.A. Lagos. 2016a. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Marine Ecology Progress Series 553: 93–109. https://doi.org/10.3354/meps11764.

    Article  CAS  Google Scholar 

  • Ramajo, L., E. Pérez-León, I.E. Hendriks, N. Marbà, D. Krause-Jensen, M.K. Sejr, M.E. Blicher, N.A. Lagos, Y.S. Olsen, and C.M. Duarte. 2016b. Food supply confers calcifiers resistance to ocean acidification. Scientific Reports 6: 19374. https://doi.org/10.1038/srep19374.

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa, R., F. Houlbrèque, É. Tambutté, F. Boisson, C. Baggini, F.P. Patti, R. Jeffree, M. Fine, A. Foggo, J.-P. Gattuso, and J.M. Hall-Spencer. 2011. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change 16: 308. https://doi.org/10.1038/nclimate1200.

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro, A.B., N. Dominguez-Gasca, A. Muñoz, and M. Ortega-Huertas. 2013. Change in the chicken egg-shell cuticle with hen age and egg freshness. Poultry Science 92 (11): 3026–3035. https://doi.org/10.3382/ps.2013-03230.

    Article  CAS  Google Scholar 

  • Rysgaard, S., and M. Sejr. 2007. Vertical flux of particulate organic matter in a High Arcic fjord: Relative importance of terrestrial and marine sources, p. 109–121. In Carbon cycling in Arctic marine ecosystems: Case study Young Sound. Medd. Groenland. Bioscience, ed. S. Rysgaard and R. Glud, vol. 58, 110–119.

    Google Scholar 

  • Sejr, M.K., D. Krause-Jensen, T. Dalsgaard, S. Ruiz-Halpern, C.M. Duarte, M. Middelboe, R.N. Glud, J. Bendtsen, T.J.S. Balsby, and S. Rysgaard. 2014. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and pCO2 in a subarctic Greenland fjord. Limnology and Oceanography 59: 1764–1778.

    Article  CAS  Google Scholar 

  • Stapp, L.S., J. Thomsen, H. Schade, C. Bock, F. Melzner, H.O. Pörtner, and G. Lannig. 2017. Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels Mytilus edulis: integrating tissue and organism response. Journal of Comparative Physiology B 1874 (4): 529–543. https://doi.org/10.1007/s00360-016-1053-6.

    Article  CAS  Google Scholar 

  • Steinacher, M., F. Joos, T.L. Frölicher, G.K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6: 515–533.

    Article  CAS  Google Scholar 

  • Thomsen, J., I. Casties, C. Pansch, A. Körtzinger, and F. Melzner. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology 194: 1017–1027. https://doi.org/10.1111/gcb.12109.

    Article  Google Scholar 

  • Thyrring, J., M.E. Blicher, J.G. Sørensen, S. Wegeberg, and M.K. Sejr. 2017. Rising air temperatures will increase intertidal mussel abundance in the Arctic. Marine Ecology Progress Series 584: 91–104. https://doi.org/10.3354/meps12369.

    Article  Google Scholar 

  • Wahl, M., S. Schneider Covachã, V. Saderne, C. Hiebenthal, J.D. Müller, C. Pansch, and Y. Sawall. 2018. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations. Limnology and Oceanogaphy 631: 3–21. https://doi.org/10.1002/lno.10608.

    Article  CAS  Google Scholar 

  • Waldbusser, G.G., E.L. Brunner, B.A. Haley, B. Hales, C.J. Langdon, and F.G. Prahl. 2013. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophysical Research Letters 40: 2171–2176. https://doi.org/10.1002/grl.50449.

    Article  CAS  Google Scholar 

  • Waldbusser, G.G., B. Hales, C.J. Langdon, B.A. Haley, P. Schrader, E.L. Brunner, M.W. Gray, C.A. Miller, and I. Gimenez. 2015. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5 (3): 273. https://doi.org/10.1038/NCLIMATE2479.

    Article  CAS  Google Scholar 

  • Wanamaker, A.D., K.J. Kreutz, H.W. Borns, D.S. Introne, S. Feindel, S. Funder, S.P.D. Rawson, and B.J. Barber. 2007. Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of Mytilus edulis collected from Maine and Greenland. Paleoceanography 22: PA2217. https://doi.org/10.1029/2006PA001352.

    Article  Google Scholar 

  • Wiercigroch, E., E. Szafraniec, K. Czamara, M.Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, M., and K. Malek. 2017. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 185: 317–335. doi: https://doi.org/10.1016/j.saa.2017.05.045.

    Article  CAS  Google Scholar 

  • Yarra, T., K. Gharbi, M. Blaxter, L.S. Peck, and M.S. Clark. 2016. Characterization of the mantle transcriptome in bivalves: Pectenmaximus, Mytilus edulis and Crassostreagigas. Marine Genomics 27: 9–15. https://doi.org/10.1016/j.margen.2016.04.003.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Greenlandic Institute of Natural Resources GINR, Nuuk, Greenland for help with fieldwork in 2015 and Kjeld Akaaraq Emil Mølgaard and Frode Vest Hansen, Arctic Station, Disko Island, University of Copenhagen, Denmark for help with fieldwork in 2016. The study is also a contribution to the marine Greenland Ecosystem Monitoring program (www.GEM.dk) MarineBasis in Nuuk and Disko Bay.

Funding

This research was funded by a grant from The Carlsberg Foundation grant number CF15-0639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Duarte.

Additional information

Communicated by Silvana Birchenough

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Placeholder Text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, C.M., Rodriguez-Navarro, A.B., Delgado-Huertas, A. et al. Dense Mytilus Beds Along Freshwater-Influenced Greenland Shores: Resistance to Corrosive Waters Under High Food Supply. Estuaries and Coasts 43, 387–395 (2020). https://doi.org/10.1007/s12237-019-00682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00682-3

Keywords

Navigation