Skip to main content
Log in

Cathodic Wear by Delamination of the Al4C3 Layer During Aluminium Electrolysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In aluminium reduction cells, an electrochemical reaction occurs between the molten electrolyte film below the aluminium pad and the carbon cathode blocks, leading to the formation of an Al4C3 layer on the cathode blocks. The properties and role of this Al4C3 layer are therefore important for the aluminium production industry, as they could help increase the life expectancy of electrolysis cells and impact the resistive voltage losses. The purpose of this study is to gain a better understanding of the formation, growth and mechanical stability of the aluminium carbide layer formed on top of the cathode block. A reliable scenario describing both the mechanical and electrochemical behaviours of the Al4C3 layer is proposed. For different industrial graphitized cathode grades, a series of experiments were carried out in a bench-scale Hall-Héroult electrolysis cell and the Al4C3 layer formed on top of the cathode was characterized. Thereafter, the CALPHAD method was combined with density functional theory simulations to estimate the electrical and physical properties of Al4C3 together with the phase equilibria occurring at the interface between the carbide layer and the aluminium pad and the cathode blocks respectively. From these calculations, a scenario for carbide layer growth and mechanical stability was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Pietrzyk, P. Palimaka, and W. Gebarowski. Archives of Metallurgy and Materials, 2014, 59: 545–550.

    Article  CAS  Google Scholar 

  2. O. Ostrem: Ph.D. Thesis, Norwegian University of Science and Technology, 2013.

  3. S. Nobakhtghalati: Master’s Thesis, Institutt for materialteknologi, 2014.

  4. J.-R. Landry, M. Fallah Fini, G. Soucy, M. Désilets, P. Pelletier, L. Rivoaland, D. Lombard: in Light Metals O. Martin, ed., Springer International Publishing, Cham, 2018, pp. 1229–33.

  5. K. Vasshaug, T. Foosnaes, G.M. Haarberg, A.P. Ratvik, E. Skybakmoen: Light Met. (Warrendale, PA), pp. 1111–16, 2009

  6. W.R. King and R.C. Dorward: J. Electrochem. Soc., 1985, 132: 388–89.

    Article  CAS  Google Scholar 

  7. P.A. Solli, T. Haarberg, T. Eggen, E. Skybakmoen, A. Sterten: Light Met. (Warrendale, PA), pp. 195–203, 1994

  8. L. Oden, and R. McCune. Metallurgical Transactions A, 1987, 18: 2005–14.

    Article  Google Scholar 

  9. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A.V. Ende. Calphad, 2016, 54: 35-53.

    Article  CAS  Google Scholar 

  10. J. Gröbner, H.L. Lukas, and F. Aldinger. Calphad, 1996, 20: 247–254.

    Article  Google Scholar 

  11. E.F. Siew, T. Ireland-Hay, G.T. Stephens, J.J.J. Chen, M.P. Taylor: Light Met. (Warrendale, PA), pp. 763–69, 2005.

  12. N.B. Pilling, R.E. Bedworth: J. Inst. Metals, 1923, 29: 529–591.

    Google Scholar 

  13. R. Odegard: Ph.D. Thesis, University of Trondhiem, 1986.

  14. J.L. Kennedy, T.D. Drysdale, and D.H. Gregory. Green Chem., 2015, 17: 285–290.

    Article  CAS  Google Scholar 

  15. G. Kresse and J. Hafner. Phys. Rev. B, 1993, 47: 558–561.

    Article  CAS  Google Scholar 

  16. G. Kresse and J. Hafner. Phys. Rev. B, 1994, 49: 14251–14269.

    Article  CAS  Google Scholar 

  17. G. Kresse and J. Furthmüller. Computational Materials Science, 1996, 6: 15–50.

    Article  CAS  Google Scholar 

  18. G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54: 11169–11186.

    Article  CAS  Google Scholar 

  19. P.E. Blöchl. Phys. Rev. B, 1994, 50: 17953–17979.

    Article  Google Scholar 

  20. G. Kresse and D. Joubert. Phys. Rev. B, 1999, 59: 1758–1775.

    Article  CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77: 3865–3868.

    Article  CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1997, 78: 1396–1396.

    Article  CAS  Google Scholar 

  23. A. E. Gheribi, A. Seifitokaldani, P. Wu, P. Chartrand. Journal of Applied Physics, 118: 145101 (2015)

    Article  Google Scholar 

  24. A. Seifitokaldani, A.E. Gheribi: Comput. Mater. Sci., 108: 17–26 (2015)

    Article  CAS  Google Scholar 

  25. A. Seifitokaldani, A. E. Gheribi, M. Dolle, P. Chartrand. Journal of Alloys and Compounds, 662: 240-251. (2016)

    Article  CAS  Google Scholar 

  26. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson. J. Appl. Phys., 1998, 84: 4891–4904.

    Article  CAS  Google Scholar 

  27. D.R. Augood: Light Met. (NY), pp. 413–27, 1980.

  28. C.M. Van Vliet. IEEE Trans. Electron Devices, 1993, 40: 1140–7.

    Article  Google Scholar 

  29. J. Slotboom, H. de Graaff. Solid-State Electronics, 19: 857–862. (1976)

    Article  CAS  Google Scholar 

  30. D. Stefanakis and K. Zekentes. Microelectronic Engineering, 2014, 116: 65–71.

    Article  CAS  Google Scholar 

  31. N. Ashcroft and N. Mermin. Solid State Physics. Saunders College, Philadelphia, 1976.

    Google Scholar 

  32. G. Galvagno, A.L. Ferla, F.L. Via, V. Raineri, A. Gasparotto, A. Carnera, and E. Rimini. Semiconductor Science and Technology, 1997, 12: 1433–37.

    Article  CAS  Google Scholar 

  33. L. Pedesseau, J. Even, M. Modreanu, D. Chaussende, E. Sarigiannidou, O. Chaix-Pluchery, and O. Durand. APL Materials, 2015, 3: 121101.

    Article  Google Scholar 

  34. D. Lombard, T. Béhérégaray, B. Féve, J.M. Jolas: Aluminium Pechiney Experience with Graphitized Cathode Blocks. Springer International Publishing, Cham, pp. 773–778 (2016)

    Google Scholar 

  35. A. Evans and J. Hutchinson. International Journal of Solids and Structures, 1984, 20: 455–466.

    Article  Google Scholar 

  36. V.L. Solozhenko and O.O. Kurakevych. Solid State Communications, 2005, 133: 385–388.

    Article  CAS  Google Scholar 

  37. C. Ji, Y. Ma, M.-C. Chyu, R. Knudson, and H. Zhu. Journal of Applied Physics, 2009, 106: 083511.

    Article  Google Scholar 

  38. G. Grimvall. Thermophysical Properties of Materials: Selected Topics in Solid State Physics. North-Holland, Amsterdam (1986)

    Google Scholar 

  39. Z.-G. Yang, P.Y. Hou: Mater. Sci. Eng. A, 391: 1-9 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC), Rio Tinto Aluminium and Carbone Savoie. Computations were made on the supercomputer Briaré at the Université de Montréal managed by Calcul-Québec and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïmen E. Gheribi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 4, 2019.

Appendix

Appendix

A.1 Al4C3-SiC Phase Diagram

See Figure A.1.

Fig. A.1
figure 9

Al4C3-SiC phase diagram calculated via the FactSage software and the FTOxCN database

A.2 Solubility of Si in Al4C3 Layer

See Figure A.2.

Fig. A.2
figure 10

Calculated solubility of Si in the Al4C3 layer at 1233 K as a function of Si dissolved in the liquid aluminium pad. The calculations were performed via the FactSage software and FTOxCN database.[9]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheribi, A.E., Fini, M.F., Rivoaland, L. et al. Cathodic Wear by Delamination of the Al4C3 Layer During Aluminium Electrolysis. Metall Mater Trans B 51, 161–172 (2020). https://doi.org/10.1007/s11663-019-01731-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01731-9

Navigation