Skip to main content
Log in

Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg) (Acari: Laelapidae) are predatory mites of soil-inhabiting pests, mainly small insects. Fungus gnats fly species are found in greenhouse strawberry production and may be controlled with predatory mites, being important to know their compatibility with the pesticides used in strawberry crops. In this study, the compatibility of seven commercial pesticides used in strawberry cultivation with the predatory mites S. scimitus and C. brevistilis was assessed in laboratory conditions. Survival and oviposition rates were evaluated between 0.5 and 120 h after treatment (HAT). The results demonstrate that lambda-cyhalothrin treatment resulted in the lowest survival rate for both mites in the first evaluations, being moderately harmful, while spinetoran was slightly harmful to C. brevistilis. On the other hand, abamectin, azadirachtin, azoxystrobin + difenoconazole, iprodione and thiamethoxam were harmless for both mites and, oviposition rate was significantly different only at 72 and 120 HAT for S. scimitus and C. brevistilis respectively. These results may be used to develop guidelines for the adoption of selective pesticides in integrated pest management programs that conserves predatory mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbatielo MJ (1965) Culture chamber for rearing soil mites. Turtox News 43:162–165

    Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Ahmad N, Karim K, Masoud A, Fateme A (2009) Selectivity of three miticides to spider mite predator, Phytoseius plumifer (Acari: Phytoseiidae) under laboratory conditions. Agric Sci China 8:326–331

    Google Scholar 

  • Arnó J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520

    Google Scholar 

  • Bernardi D, Botton M, Cunha US, da, Bernardi O, Malausa T, Garcia MS, Nava DE (2012) Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag Sci 69:75–80

    Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    CAS  Google Scholar 

  • Brasil (2015) Instrução Normativa Conjunta nº 1, de 06 de fevereiro de 2015. Especificações de referência de produtos fitossanitários com uso aprovado para a agricultura orgânica. Diário Oficial da União, 06 de fevereiro de 2015. http://www.agricultura.gov.br/assuntos/sustentabilidade/organicos/produtos-fitossanitarios/arquivos-especificacao-de-referencia/in-conjunta-sda-sdc-no-1-de-06-de-fevereiro-de-2015.pdf. Accessed 6 Apr 2017

  • Brasil (2018) Ministério da Agricultura, Pecuária e Abastecimento. Agrofit—Sistema de agrotóxicos fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 13 June 2018

  • Brito HM, Gondim Jr MGC, Oliveira JV, de, Câmara CAGda (2006) Toxicidade de formulações de nim (Azadirachta indica A. Juss.) ao ácaro-rajado e a Euseius alatus De Leon e Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotrop Entomol 35:500–505

    Google Scholar 

  • Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12:321–331

    Google Scholar 

  • Broadley A, Kauschke E, Mohrig W (2018) Black fungus gnats (Diptera: Sciaridae) found in association with cultivated plants and mushrooms in Australia, with notes on cosmopolitan pest species and biosecurity interceptions. Zootaxa 4415:201–242

    Google Scholar 

  • Bueno ADF, Carvalho GA, Santos ACdos, Sosa-Gomèz DR, Silva DMda (2017) Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Cienc Rural 47:20160829

    Google Scholar 

  • Castilho RC, Moraes GJ, de, Silva ES, Freire RAP, Eira FCda (2009) The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. Int J Pest Manag 55:181–185

    Google Scholar 

  • Castilho RV, Grützmacher AD, Nava DE, Zotti MJ, Siqueira PRB, Spagnol D (2013) Selectivity of pesticides used in peach orchards on the larval stage of the predator Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Semina: Ciênc Agrár 34:3585–3596

    Google Scholar 

  • Cecatto AP, Calvete EO, Nienow AA, Costa RC, da, Mendonça HFC, Pazzinato AC (2013) Culture systems in the production and quality of strawberry cultivars. Acta Sci Agron 35:471–478

    Google Scholar 

  • Chen C, Shi X, Desneux N, Han P, Gao X (2017) Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology 26:868–875

    CAS  Google Scholar 

  • Cloyd RA (2008) Management of fungus gnats (Bradysia spp.) in greenhouse and nurseries. Floricul Ornam Biotechnol 2:84–89

    Google Scholar 

  • Cloyd RA, Zaborski ER (2004) Fungus gnats, Bradysia spp. (Diptera: Sciaridae), and other arthropods in commercial bagged soilless growing media and rooted plant plugs. J Econ Entomol 97:503–510

    Google Scholar 

  • Ditillo JL, Kennedy GG, Walgenbach JF (2016) Effects of insecticides and fungicides commonly used in tomato production on Phytoseiulus persimilis (Acari: Phtyoseiidae). J Econ Entomol 109:2298–2308

    CAS  Google Scholar 

  • Duarte A, da F, Cunha US, da, Moraes GJde (2018) Suitability of edaphic arthropods as prey for Proctolaelaps bickleyi and Cosmolaelaps brevistilis (Acari: Mesostigmata: Melicharidae, Laelapidae) under laboratory conditions. Exp Appl Acarol 74:1–8

    Google Scholar 

  • Galm U, Sparks TC (2016) Natural product derived insecticides: discovery and development of spinetoram. J Ind Microbiol Biotechnol 43:185–193

    CAS  Google Scholar 

  • Hall FR, Thacker JRM (1993) Laboratory studies on effects of three permethrin formulations on mortality, fecundity, feeding, and repellency of the two-spotted spider mite (Acari: Tetranychidae). Hortic. Horticult Entomol 86:537–543

    CAS  Google Scholar 

  • Jansen JP (1999) Effects of wheat foliar fungicides on the aphid endoparasitoid Aphidius rhopalosiphi DeStefani-Perez (Hym., Aphididae) on glass plates and on plants. J Appl Entomol 123:217–224

    CAS  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

    CAS  Google Scholar 

  • Lefebvre M, Noubar JB, Thistlewood HMA, Mauffette Y, Racette G (2011) A laboratory assessment of the toxic attributes of six ‘reduced risk insecticides’ on Galendromus occidentalis (Acari: Phytoseiidae). Chemosphere 84:25–30

    CAS  Google Scholar 

  • Lima DB, Melo JWS, Gondim Jr. MGC, Guedes RNC, Oliveira JEM (2016) Population-level effects of abamectin, azadirachtin and fenpyroximate on the predatory mite Neoseiulus baraki. Exp Appl Acarol 70:165–177

    CAS  Google Scholar 

  • Madbouni MAZ, Samih MA, Qureshi JA, Biondi A, Namvar P (2017) Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis. Plos ONE 12:e0187439

    Google Scholar 

  • Magano DA, Grutzmacher AD, De Armas FS, Paulus LF, Panozzo LE, Mentnech KJ, Zotti M (2015) Evaluating the selectivity of registered fungicides for soybean against Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae). Afr J Agric Res 10:3825–3831

    CAS  Google Scholar 

  • Paranjpe AV, Cantliffe DJ, Lamb EM, Stoffella PJ, Powell C (2003) Winter strawberry production in greenhouses using soilless substrates: an alternative to methyl bromide soil fumigation. Proc Fla State Hortic Soc 116:98–105

    Google Scholar 

  • Pazini JB, Padilha AC, Cagliari D, Bueno FA, Rakes M, Zotti MJ, Martins JF, da S, Grutzmacher AD (2019) Differential impacts of pesticides on Euschistus heros (Hem.: Pentatomidae) and its parasitoid Telenomus podisi (Hym.: Platygastridae). Sci Rep 9:6544

    Google Scholar 

  • Pazini JB, Pasini RA, Rakes M, De Arms F, Seidel EJ, Martins JF, da S, Grutzmacher AD (2017a) Toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop Entomol 46:461–470

    CAS  Google Scholar 

  • Pazini JB, Pasini RA, Seidel EJ, Rakes M, Martins JF, da S, Grutzmacher AD (2017b) Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Ecotoxicology 26:782–791

    CAS  Google Scholar 

  • Ponce A, dos R, Bastiani MID, Minim VP, Vanetti MCD (2009) Características físico-químicas e microbiológicas de morango minimamente processado. Ciência e Tecnol Aliment 30:113–118

    Google Scholar 

  • R Development Core Team (2018) R—A language and environment for statistical computing. rev.3.2.0. R Foundation for Statistical Computing, Vienna, Austria, http://r-project.org. Accessed 10 Aug 2018

  • Radin B, VRDS Wolff, Lisboa BB, Witter S, JRP Silveira (2009) Bradysia sp. em morangueiro. Ciência Rural 39:547–550

    Google Scholar 

  • Reis PR, Sousa ÉO (2001) Seletividade de chlorfenapyr e fenbutatin-oxide sobre duas espécies de ácaros predadores (Acari: Phytoseiidae) em citros. Rev Bras Frutic 23:584–588

    Google Scholar 

  • Schlesener DCH, Duarte A, da F, Guerrero MFC, Cunha US, da, Nava DE (2013) Efeitos do nim sobre Tetranychus urticae Koch (Acari: Tetranychidae) e os predadores Phytoseiulus macropilis (Banks) e Neoseiulus californicus (Mcgregor) (Acari: Phytoseiidae). Rev Bras Frutic 35:59–66

    Google Scholar 

  • Schmidt-Jeffris RA, Beers EH (2018) Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. Crop Prot 103:56–64

    CAS  Google Scholar 

  • da Silva MZ, de Oliveira CAL(2006) Seletividade de alguns agrotóxicos em uso na citricultura ao ácaro predador Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) Rev Bras Frutic 28:205–208

    Google Scholar 

  • Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Larson LL, Worden TV, Thibault ST (1998) Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J Econ Entomol 91:1277–1283

    CAS  Google Scholar 

  • Stecca C, do S, Silva DM, da, Bueno ADF, Pasini A, Denez MD, Andrade K (2017) Selectivity Insectic Use soybean crop Predat Podisus nigrispinus (Hemiptera: Pentatomidae) Semin 38:3469–3480

    Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Toxicol 45:247–268

    CAS  Google Scholar 

  • Vidal C, Kreiter S (1995) Resistance to a range of insecticides in the predaceous mite Typhlodromus pyri (Acari: Phytoseiidae): inheritance and physiological mechanisms. J Econ Entomol 88:1097–1105

    CAS  Google Scholar 

  • WHO (2009) The WHO recommended classification of pesticides by hazard and guidelines to classification, pp. 1–81. http://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf. Accessed 23 Dec 2018

  • Zanardi OZ, Bordini GP, Franco AA, Jacob CRO, Yamamoto PT (2017) Sublethal effects of pyrethroid and neonicotinoid insecticides on Iphiseiodes zuluagai Denmark and Muma (Mesostigmata: Phytoseiidae). Ecotoxicology 26:1188–1198

    Google Scholar 

  • Zantedeschi R, Grützmacher AD, Pazini J, de B, Bueno FA, Machado LL (2018) Selectivity of pesticides registered for soybean crop on Telenomus podisi and Trissolcus basalis. Pesqui Agropecu Trop 48:52–58

    Google Scholar 

Download references

Acknowledgements

We are grateful to Anderson Dionei Grutzmacher, head of Laboratory of Integrated Pest Management (LabMIP), who kindly provided the pesticides used in this study.

Funding

Funding was provided by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES-Grant Number 88882.182253/2018-01 and 88882.306693/2018-01 for first and third author respectively) and the National Council for Scientific and Technological Development (CNPq-Grant Number 140328/2016-5 for second author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane da F. Duarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, A.d.F., de Bastos Pazini, J., Duarte, J.L.P. et al. Compatibility of pesticides used in strawberry crops with predatory mites Stratiolaelaps scimitus (Womersley) and Cosmolaelaps brevistilis (Karg). Ecotoxicology 29, 148–155 (2020). https://doi.org/10.1007/s10646-020-02164-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02164-w

Keywords

Navigation