Skip to main content
Log in

Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Element selectivity and possibilities for in situ and operando applications make X-ray absorption spectroscopy a powerful tool for structural characterization of catalysts. While determination of coordination numbers and interatomic distances from extended spectral region is rather straightforward, analysis of X-ray absorption near-edge structure (XANES) spectra remains a highly debated and topical problem. The latter region of spectra is shaped depending on the local 3D geometry and electronic structure. However, there is no straightforward procedure for the unambiguous extraction of these parameters. This work gives a critical vision on the amount of information that can be practically extracted from Pd K-edge XANES spectra measured under in situ and operando conditions, in which adsorption of reactive molecules at the surface of palladium with further formation of subsurface and bulk palladium carbides are expected. We investigate how particle size, concentration of carbon impurities, and their distribution in the bulk and at the surface of palladium particles affect Pd K-edge XANES features and to which extend they should be implemented in the theoretical model to adequately reproduce experimental data. Then, we show how the step-by-step increasing the complexity of the theoretical model improves the agreement with experiment. Finally, we suggest a set of formal descriptors relevant to possible structural diversity and construct a library of theoretical spectra for machine-learning-based analysis of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armbrüster M, Behrens M, Cinquini F, Föttinger K, Grin Y, Haghofer A, Klötzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Sautet P, Schlögl R, Shao L, Szentmiklósi L, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G (2012) How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry. ChemCatChem 4:1063

    Article  CAS  Google Scholar 

  2. Borodziński A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev Sci Eng 48:144

    Article  CAS  Google Scholar 

  3. Borodziński A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: steady‐state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev Sci Eng 50:469

    Article  CAS  Google Scholar 

  4. Shaikhutdinov S, Heemeier M, Bäumer M, Lear T, Lennon D, Oldman RJ, Jackson SD, Freund HJ (2001) Structure–reactivity relationships on supported metal model catalysts: adsorption and reaction of ethene and hydrogen on Pd/Al2O3/NiAl(110). J Catal 200:339

    Article  CAS  Google Scholar 

  5. Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P (2010) Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J Phys Chem C 114:2293–2299

    Article  CAS  Google Scholar 

  6. Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320:86–89

    Article  CAS  Google Scholar 

  7. Teschner D, Revay Z, Borsodi J, Havecker M, Knop-Gericke A, Schlogl R, Milroy D, Jackson SD, Torres D, Sautet P (2008) Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. Angew Chem Int Ed Engl 47:9274–9278

    Article  CAS  Google Scholar 

  8. Tew MW, Janousch M, Huthwelker T, van Bokhoven JA (2011) The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J Catal 283:45–54

    Article  CAS  Google Scholar 

  9. Tew MW, Nachtegaal M, Janousch M, Huthwelker T, van Bokhoven JA (2012) The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS. Phys Chem Chem Phys 14:5761–5768

    Article  CAS  Google Scholar 

  10. Bugaev AL, Guda AA, Lazzarini A, Lomachenko KA, Groppo E, Pellegrini R, Piovano A, Emerich H, Soldatov AV, Bugaev LA, Dmitriev VP, van Bokhoven JA, Lamberti C (2017) situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catal Today 283:126

    Article  CAS  Google Scholar 

  11. Guda AA, Guda SA, Lomachenko KA, Soldatov MA, Pankin IA, Soldatov AV, Braglia L, Bugaev AL, Martini A, Signorile M, Groppo E, Piovano A, Borfecchia E, Lamberti C (2019) Quantitative structural determination of active sites from in situ and operando XANES spectra: from standard ab initio simulations to chemometric and machine learning approaches. Catal Today 336:21

    Article  CAS  Google Scholar 

  12. Timoshenko J, Lu D, Lin Y, Frenkel AI (2017) Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles. J Phys Chem Lett 8:5091–5098

    Article  CAS  Google Scholar 

  13. Bugaev AL, Guda AA, Lomachenko KA, Kamyshova EG, Soldatov MA, Kaur G, Øien-Ødegaard S, Braglia L, Lazzarini A, Manzoli M, Bordiga S, Olsbye U, Lillerud KP, Soldatov AV, Lamberti C (2018) Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Faraday Discuss 208:287–306

    Article  CAS  Google Scholar 

  14. Bugaev AL, Usoltsev OA, Lazzarini A, Lomachenko KA, Guda AA, Pellegrini R, Carosso M, Vitillo JG, Groppo E, van Bokhoven JA, Soldatov AV, Lamberti C (2018) Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discuss 208:187–205

    Article  CAS  Google Scholar 

  15. Groppo E, Lazzarini A, Carosso M, Bugaev A, Manzoli M, Pellegrini R, Lamberti C, Banerjee D, Longo A (2018) Dynamic behavior of Pd/P4VP catalyst during the aerobic oxidation of 2-propanol: a simultaneous SAXS/XAS/MS operando study. ACS Catal 8:6881

    Article  CAS  Google Scholar 

  16. Kamyshova EG, Skorynina AA, Bugaev AL, Lamberti C, Soldatov AV (2019) Formation and growth of Pd nanoparticles in UiO-67 MOF by in situ EXAFS. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2019.02.003

    Article  Google Scholar 

  17. Guda SA, Guda AA, Soldatov MA, Lomachenko KA, Bugaev AL, Lamberti C, Gawelda W, Bressler C, Smolentsev G, Soldatov AV, Joly Y (2015) Optimized finite difference method for the full-potential XANES simulations: Application to molecular adsorption geometries in MOFs and metal–ligand intersystem crossing transients. J Chem Theor Comput 11:4512–4521

    Article  CAS  Google Scholar 

  18. Guda AA, Guda SA, Soldatov MA, Lomachenko KA, Bugaev AL, Lamberti C, Gawelda W, Bressler C, Smolentsev G, Soldatov AV, Joly Y (2016) Finite difference method accelerated with sparse solvers for structural analysis of the metal–organic complexes. J Phys Conf Ser 712:012004

    Article  CAS  Google Scholar 

  19. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using plane-wave basis set. Comput Mater Sci 6:50

    Article  CAS  Google Scholar 

  20. Skorynina AA, Tereshchenko AA, Usoltsev OA, Bugaev AL, Lomachenko KA, Guda AA, Groppo E, Pellegrini R, Lamberti C, Soldatov A (2018) Time-dependent carbide phase formation in palladium nanoparticles. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2018.11.033

    Article  Google Scholar 

  21. Martini A, Guda SA, Guda AA, Smolentsev G, Algasov A, Usoltsev OA, Soldatov MA, Bugaev AL, Rusalev YV, Lamberti C, Soldatov AV (2019) PyFitit: the software for quantitative analysis of XANES spectra using machine-learning algorithms. Comput Phys Commun. https://doi.org/10.1016/j.cpc.2019.107064

    Article  Google Scholar 

  22. Smolentsev G, Soldatov A (2005) Quantitative local structure refinement from XANES: multi-dimensional interpolation approach. J Synchrotron Radiat 13:19–29

    Article  CAS  Google Scholar 

  23. Smolentsev G, Soldatov AV (2007) FitIt: new software to extract structural information on the basis of XANES fitting. Comput Mater Sci 39:574

    Article  CAS  Google Scholar 

  24. Molnár Á, Sárkány A, Varga M (2001) Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. J Mol Catal A 173:221

    Article  Google Scholar 

  25. Bugaev AL, Guda AA, Pankin IA, Groppo E, Pellegrini R, Longo A, Soldatov AV, Lamberti C (2019) The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catal Today 336:40–44

    Article  CAS  Google Scholar 

  26. Bugaev AL, Usoltsev OA, Guda AA, Lomachenko KA, Pankin IA, Rusalev YV, Emerich H, Groppo E, Pellegrini R, Soldatov AV, van Bokhoven JA, Lamberti C (2018) Palladium carbide and hydride formation in the bulk and at the surface of palladium nanoparticles. J Phys Chem C 122:12029–12037

    Article  CAS  Google Scholar 

  27. Bugaev AL, Guda AA, Pankin IA, Groppo E, Pellegrini R, Longo A, Soldatov AV, Lamberti C (2019) Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles. Data Brief 24:103954

    Article  Google Scholar 

  28. Bugaev AL, Usoltsev OA, Guda AA, Lomachenko KA, Brunelli M, Groppo E, Pellegrini R, Soldatov AV, van Bokhoven JA, Hydrogenation of ethylene over palladium: evolution of the catalyst structure by operando synchrotron-based techniques. Faraday Discuss. (submitted)

  29. Bugaev AL, Guda AA, Lomachenko KA, Srabionyan VV, Bugaev LA, Soldatov AV, Lamberti C, Dmitriev VP, van Bokhoven JA (2014) Temperature- and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. J Phys Chem C 118:10416–10423

    Article  CAS  Google Scholar 

  30. Bugaev AL, Guda AA, Lomachenko KA, Lazzarini A, Srabionyan VV, Vitillo JG, Piovano A, Groppo E, Bugaev LA, Soldatov AV, Dmitriev VP, Pellegrini R, van Bokhoven JA, Lamberti C (2016) Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD. J Phys Conf Ser 712:012032

    Article  CAS  Google Scholar 

  31. Bugaev AL, Srabionyan VV, Soldatov AV, Bugaev LA, van Bokhoven JA (2013) The role of hydrogen in formation of Pd XANES in Pd-nanoparticles. J Phys Conf Ser 430:012028

    Article  CAS  Google Scholar 

  32. Bugaev AL, Guda AA, Lomachenko KA, Shapovalov VV, Lazzarini A, Vitillo JG, Bugaev LA, Groppo E, Pellegrini R, Soldatov AV, van Bokhoven JA, Lamberti C (2017) Core–shell structure of palladium hydride nanoparticles revealed by combined X-ray absorption spectroscopy and X-ray diffraction. J Phys Chem C 121:18202–18213

    Article  CAS  Google Scholar 

  33. Ziemecki SB, Jones GA, Swartzfager DG, Harlow RL, Faber J (1985) Formation of interstitial palladium-carbon phase by interaction of ethylene, acetylene, and carbon monoxide with palladium. J Am Chem Soc 107:4548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Theoretical calculations of XANES spectra and DFT analysis were performed in frame of the President's Grant of Russian Federation for Young Scientists (Grant МК-2554.2019.2 to A.L.B., Agreement No. 075-15-2019-1096). The experimental data were obtained in frame of the Russian Foundation for Basic Research (RFBR) Project Number 18-32-00856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram L. Bugaev.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 121.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usoltsev, O.A., Bugaev, A.L., Guda, A.A. et al. Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data. Top Catal 63, 58–65 (2020). https://doi.org/10.1007/s11244-020-01221-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01221-2

Keywords

Navigation