Skip to main content
Log in

Effect of Process Parameters on Microstructure and Dynamic Compressive Property of Ti-6Al-4V Plates Fabricated via Friction Stir Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of Ti-6Al-4V plates (thickness: 5 mm) welded via friction stir welding (rotation speed: 150-300 rpm, welding speed: 70-100 mm/min) were investigated. The microstructural investigation revealed that the nugget obtained at 150 rpm and 70 mm/min was composed of a mixed structure, whereas the other weld joints were composed of a fully lamellar structure. Transmission electron microscopy analysis revealed that fine recrystallized α-grains and dislocations occurred in the lamellar structure. The tensile tests showed that the tensile strength of all joints reached 96% of the tensile strength characterizing the base material. Moreover, the failure strain of each joint during tensile testing was > 13%. The weld joints with fully lamellar nuggets exhibited better dynamic compressive properties than the joints with mixed-structure nuggets. The results demonstrated that the recrystallized α-grains and dislocations are beneficial for enhancing the dynamic mechanical properties. The optimum dynamic mechanical response was obtained when a rotation speed and welding speed of 300 rpm and 100 mm/min, respectively, were employed as the welding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2013, 56(1), p 1-48

    Article  Google Scholar 

  2. R. Nandan, T. Debroy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023

    Article  CAS  Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1–2), p 1–78

    Article  Google Scholar 

  4. Y. Suyuan, Z. Hongran, T. Yishi, and Y. Ying, Microstructure and Properties of Friction Stir Welded Joints of Magnesium Rare Earth Alloy, Chin. J. Rare Met., 2013, 37(1), p 33–37

    Google Scholar 

  5. L. Yang Suyuan, Dongdong, Status and Prospect of Friction Stir Welding of Magnesium Alloys, Chin. J. Rare Met., 2014, 38(5), p 896–904

    Google Scholar 

  6. L. Zhou, H.J. Liu, and Q.W. Liu, Effect of Process Parameters on Stir Zone Microstructure in Ti–6Al–4V Friction Stir Welds, J. Mater. Sci., 2009, 45(1), p 39–45

    Article  Google Scholar 

  7. L. Zhou, H.J. Liu, P. Liu, and Q.W. Liu, The Stir Zone Microstructure and Its Formation Mechanism in Ti–6Al–4V Friction Stir Welds, Scr. Mater., 2009, 61(6), p 596–599

    Article  CAS  Google Scholar 

  8. L. Zhou, H.J. Liu, and Q.W. Liu, Effect of Rotation Speed on Microstructure and Mechanical Properties of Ti–6Al–4V Friction Stir Welded Joints, Mater. Des., 2010, 31(5), p 2631–2636

    Article  CAS  Google Scholar 

  9. H.J. Liu, L. Zhou, and Q.W. Liu, Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Joints of Ti–6Al–4V Titanium Alloy, Mater. Des., 2010, 31(3), p 1650–1655

    Article  CAS  Google Scholar 

  10. H.-J. Liu and L. Zhou, Microstructural Zones and Tensile Characteristics of Friction Stir Welded Joint of TC4 Titanium Alloy, Trans. Nonferr. Met. Soc. China, 2010, 20(10), p 1873–1878

    Article  CAS  Google Scholar 

  11. P. Edwards and M. Ramulu, Identification of Process Parameters for Friction Stir Welding Ti–6Al–4V, J. Eng. Mater. Technol., 2010, 132(3), p 031006

    Article  Google Scholar 

  12. M. Ramulu, P.D. Edwards, D.G. Sanders, A.P. Reynolds, and T. Trapp, Tensile Properties of Friction Stir Welded and Friction Stir Welded-Superplastically Formed Ti–6Al–4V Butt Joints, Mater. Des., 2010, 31(6), p 3056–3061

    Article  CAS  Google Scholar 

  13. P. Edwards and M. Ramulu, Peak Temperatures during Friction Stir Welding of Ti–6Al–4V, Sci. Technol. Weld. Join., 2013, 15(6), p 468–472

    Article  Google Scholar 

  14. P. Edwards and M. Ramulu, Fatigue Performance of Friction Stir Welded Titanium Structural Joints, Int. J. Fatigue, 2015, 70, p 171–177

    Article  CAS  Google Scholar 

  15. P. Edwards and M. Ramulu, Fatigue Performance of Friction Stir Welded Ti–6Al–4V Subjected to Various Post Weld Heat Treatment Temperatures, Int. J. Fatigue, 2015, 75, p 19–27

    Article  CAS  Google Scholar 

  16. D.G. Sanders, P. Edwards, A.M. Cantrell, K. Gangwar, and M. Ramulu, Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties, JOM, 2015, 67(5), p 1054–1063

    Article  CAS  Google Scholar 

  17. Z. Liu, Y. Wang, K. Yang, and D. Yan, Microstructure and Mechanical Properties of Rapidly Cooled Friction Stir Welded Ti-6Al-4V Alloys, J. Mater. Eng. Perform., 2018, 27(8), p 4244–4252

    Article  CAS  Google Scholar 

  18. Y.-J. Ko, K.-J. Lee, and K.-H. Baik, Effect of Tool Rotational Speed on Mechanical Properties and Microstructure of Friction Stir Welding Joints Within Ti–6Al–4V Alloy Sheets, Adv. Mech. Eng., 2017, 9(8), p 168781401770970

    Article  Google Scholar 

  19. H. Liu and H. Fujii, Microstructural and Mechanical Properties of a Beta-Type Titanium Alloy Joint Fabricated by Friction Stir Welding, Mater. Sci. Eng., A, 2018, 711, p 140–148

    Article  CAS  Google Scholar 

  20. R.H. Gao, Q.B. Fan, F.C. Wang, Y.P. Zhang, L.R. Huo, and C.H. Pei, Relationship between Dynamic Compressive Mechanical Properties and Ballistic Performance of Titanium Armor Materials, Rare Met. Mater. Eng., 2015, 44(11), p 2733–2736 ((Chinese))

    CAS  Google Scholar 

  21. S. Mironov, Y.S. Sato, and H. Kokawa, Evaluation of Texture Developed in High-Temperature β-Phase during Friction Stir Welding of Ti-6Al-4V, Key Eng. Mater., 2012, 508, p 106–111

    Article  CAS  Google Scholar 

  22. M. Esmaily, S. Nooshin Mortazavi, P. Todehfalah, and M. Rashidi, Microstructural Characterization and Formation of α′ Martensite Phase in Ti–6Al–4V Alloy Butt Joints Produced by Friction Stir and Gas Tungsten Arc Welding Processes, Mater. Des., 2013, 47, p 143–150

    Article  CAS  Google Scholar 

  23. S. Yoon, R. Ueji, and H. Fujii, Effect of Initial Microstructure on Ti–6Al–4V Joint by Friction Stir Welding, Mater. Des., 2015, 88, p 1269–1276

    Article  CAS  Google Scholar 

  24. S. Yoon, R. Ueji, and H. Fujii, Effect of Rotation Rate on Microstructure and Texture Evolution during Friction Stir Welding of Ti–6Al–4V Plates, Mater. Charact., 2015, 106, p 352–358

    Article  CAS  Google Scholar 

  25. X. Jiang, B.P. Wynne, and J. Martin, Microstructure and Texture Evolution of Stationary Shoulder Friction Stir Welded Ti6Al4V Alloy, Sci. Technol. Weld. Join., 2015, 20(7), p 594–600

    Article  CAS  Google Scholar 

  26. S. Sharma, A.N. Majila, V.M. Chavan, D.C. Fernando, R.J. Patel, and S.N. Babu, Deformation Response of Titanium Alloy under Static and Dynamic Loading, Procedia Eng., 2017, 173, p 1894–1900

    Article  Google Scholar 

  27. H. Yang, D. Wang, X. Zhu, and Q. Fan, Dynamic Compression-Induced Twins and Martensite and Their Combined Effects on the Adiabatic Shear Behavior in a Ti-8.5Cr-1.5Sn Alloy, Mater. Sci. Eng., A, 2019, 759, p 203–209

    Article  CAS  Google Scholar 

  28. C. Ran, P. Chen, L. Li, W. Zhang, Y. Liu, and X. Zhang, High-Strain-Rate Plastic Deformation and Fracture Behaviour of Ti-5Al-5Mo-5 V-1Cr-1Fe Titanium Alloy at Room Temperature, Mech. Mater., 2018, 116, p 3–10

    Article  Google Scholar 

  29. R. Edwin Raj, V. Parameswaran, and B.S.S. Daniel, Comparison of Quasi-static and Dynamic Compression Behavior of Closed-Cell Aluminum Foam, Mater. Sci. Eng., A, 2009, 526(1–2), p 11–15

    Article  Google Scholar 

  30. K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, and Y. Morisada, Flexible Control of the Microstructure and Mechanical Properties of Friction Stir Welded Ti–6Al–4V Joints, Mater. Des., 2013, 46, p 348–354

    Article  CAS  Google Scholar 

  31. L.H. Wu, D. Wang, B.L. Xiao, and Z.Y. Ma, Microstructural Evolution of the Thermomechanically Affected Zone in a Ti–6Al–4V Friction Stir Welded Joint, Scr. Mater., 2014, 78–79, p 17–20

    Article  Google Scholar 

  32. M.Q. Peng, X.W. Cheng, C. Zheng, K.W. Yang, and D. Jin, Effects of Secondary alpha Phase Width on Dynamic Mechanical Properties and Sensitivity of Adiabatic Shear Banding in Bimodal Microstructures of TC4 Alloy, Rare Metal Mater. Eng., 2017, 46(7), p 1843–1849 ((Chinese))

    Google Scholar 

Download references

Acknowledgments

This study is financially supported by “The National Natural Science Foundation of China (No. 51571031).” We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Suyuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiawei, B., Ting, Y. & Suyuan, Y. Effect of Process Parameters on Microstructure and Dynamic Compressive Property of Ti-6Al-4V Plates Fabricated via Friction Stir Welding. J. of Materi Eng and Perform 29, 637–647 (2020). https://doi.org/10.1007/s11665-020-04563-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04563-w

Keywords

Navigation