Skip to main content
Log in

Phase Transformation Modeling for Hypo Peritectic Steel in Continuous Cooling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Phase change of steel during cooling affects the slab qualities in continuous casting. Especially, crack susceptibility of hypo peritectic steel is high because large volume shrinkage occurs by peritectic phase transformation during solidification and cooling. In continuous cooling, phase change is different from the behaviors under the equilibrium condition, such as undercooling and extend of peritectic reaction, etc. Therefore, we develop a new phase change model considering thermodynamics, empirical equations, and carbon diffusion in each phase to predict phase change behavior during continuous cooling. In this model, phase change of hypo peritectic steel comprises 5 stages until all phases become the γ phase. The velocities of the δ/γ interface and phase fractions during cooling are calculated according to cooling rate, undercooling of the γ phase, and carbon contents. The results show that if solidification ends by the δ phase during dTp, the γ phase is formed by massive transformation. On the contrary, if peritectic reaction starts with liquid, the γ phase is formed and grows by diffusional transformation. In latter case, massive transformation of remaining δ phase can occur with high undercooling or very fast cooling rates. This analysis shows that there are several different paths depending on carbon contents of hypo peritectic steels.

Graphic Abstract

Phase change of hypo peritectic steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Lan, L. Li, Z. Tie, H. Tang, J. Zhang, Met. Mater. Int. 25, 1603–1615 (2019)

    Article  CAS  Google Scholar 

  2. P. Lan, D.A. Nguyen, S.-Y. Lee, J.-W. Cho, Met. Mater. Int. 23, 568–575 (2017)

    Article  CAS  Google Scholar 

  3. J. Xu, S. He, T. Wu, X. Long, Q. Wang, ISIJ Int. 52, 1856–1861 (2012)

    Article  CAS  Google Scholar 

  4. D.M. Stefanescu, ISIJ Int. 46, 786–794 (2006)

    Article  CAS  Google Scholar 

  5. H. Shibata, Y. Arai, M. Suzuki, T. Emi, Metall. Mater. Trans. B 31, 981–991 (2000)

    Article  Google Scholar 

  6. H.W. Kerr, J. Cisse, G. Bolling, Acta Metall. 22, 677–686 (1974)

    Article  CAS  Google Scholar 

  7. S. Griesser, C. Bernhard, R. Dippenaar, Acta Mater. 81, 111–120 (2014)

    Article  CAS  Google Scholar 

  8. E.A. López, M.H. Trejo, J.J.R. Mondragón, M.J.C. Román, H.S. Tovar, ISIJ Int. 49, 851–858 (2009)

    Article  Google Scholar 

  9. S.-C. Moon, R. Dippenaar, S.-H. Lee, in IOP conference series: materials science and engineering, (IOP Publishing, 2012), p. 012061

  10. M. Yoshiya, K. Nakajima, M. Watanabe, N. Ueshima, T. Nagira, H. Yasuda, Mater. Trans. 56, 1461–1466 (2015)

    Article  CAS  Google Scholar 

  11. H. Yasuda, T. Nagira, M. Yoshiya, A. Sugiyama, N. Nakatsuka, M. Kiire, M. Uesugi, K. Uesugi, K. Umetani, K. Kajiwara, in IOP conference series: materials science and engineering, (IOP Publishing, 2012), p. 012036

  12. M. Suzuki, Y. Yamaoka, Mater. Trans. 44, 836–844 (2003)

    Article  CAS  Google Scholar 

  13. H. Mizukami, A. Yamanaka, T. Watanabe, ISIJ Int. 42, 964–973 (2002)

    Article  CAS  Google Scholar 

  14. Y.-M. Won, B.G. Thomas, Metall. Mater. Trans. A 32, 1755–1767 (2001)

    Article  Google Scholar 

  15. M.H. Trejo, E.A. Lopez, J.J.R. Mondragon, M.J.C. Roman, H.S. Tovar, Met. Mater. Int. 16, 731–737 (2010)

    Article  CAS  Google Scholar 

  16. D. Phelan, M. Reid, R. Dippenaar, Metall. Mater. Trans. A 37, 985–994 (2006)

    Article  Google Scholar 

  17. Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka, Metall. Mater. Trans. B 17, 845–859 (1986)

    Article  Google Scholar 

  18. N. El-Kaddah, J. Szekely, G. Carlsson, Metall. Trans. B 15, 633–640 (1984)

    Article  CAS  Google Scholar 

  19. J.J.R. Mondragón, M.H. Trejo, M.J.C. Román, ISIJ Int. 48, 454–460 (2008)

    Article  Google Scholar 

  20. C. Cicutti, R. Boeri, Steel Res. Int. 77, 194–201 (2006)

    Article  CAS  Google Scholar 

  21. D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint) (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  22. M. Onink, C. Brakman, F. Tichelaar, E. Mittemeijer, S. Van der Zwaag, J. Root, N. Konyer, Scr. Metall. Mater. 29, 1011–1016 (1993)

    Article  CAS  Google Scholar 

  23. M. Yoshiya, M. Sato, M. Watanabe, K. Nakajima, T. Yokoi, N. Ueshima, T. Nagira, H. Yasuda, in IOP conference series: materials science and engineering, (IOP Publishing, 2015), p. 012049

  24. R.B. Bird, Appl. Mech. Rev. 55, R1–R4 (2002)

    Article  Google Scholar 

  25. M. Yoshiya, M. Watanabe, K. Nakajima, N. Ueshima, K. Hashimoto, T. Nagira, H. Yasuda, Mater. Trans. 56, 1467-1474 (2015)

    Article  CAS  Google Scholar 

  26. S.C. Moon, R. Dippenaar and S.-Y. Kim, in AISTech conference

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-woo Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Jh., Yi, Kw. Phase Transformation Modeling for Hypo Peritectic Steel in Continuous Cooling. Met. Mater. Int. 27, 2395–2405 (2021). https://doi.org/10.1007/s12540-019-00593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00593-9

Keywords

Navigation