Skip to main content
Log in

Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the scope of two-dimensional (2D) material study, blue phosphorus (BP) is a new graphene-like layered structure that has been successfully synthesized in the experiment after it was theoretically proved to be thermostable. These 2D structured functional materials have great potential in the next-generation nanoscale electronic devices for their unique features. Here, we composite BP and monolayer WX2 (X = S/Se/Te) based on van der Waals force (vdW) interaction to obtain well-defined type-II band alignment heterostructures. A systematic theoretic study was conducted to explore the interlayer coupling effects and the bands’ re-alignment of the BP–WX2 heterostructure after the strain was applied. Nowadays, many researches have proved that 2D materials can be used to degrade pollutants or used as a potential photovoltaic cell material to obtain high performance. We here twist BP and WX2 (X = S/Se/Te) into different angles to lay a theoretical framework on the band alignment and carriers’ separation. It reveals that the electronic properties of freestanding BP and WX2 can be roughly preserved in the corresponding heterostructures. Upon applying strain, band alignment exhibits significant adjustability through varying external strain. The heterostructures are type-II in a certain strain range, within which the carriers can be effectively separated spatially. These heterostructures undergo a transition from semiconductor to metal when a certain strain is imposed. This work not only provides a deep insight into the construction of heterostructures, but presents a new possibility for strain engineering that is both flexible and feasible and can be used for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Jiang, X. Zhang, F. Xiong, Z. Hua, Z. Wang, S. Yang, Room temperature ferromagnetism in transition metal-doped black phosphorous. Appl. Phys. Lett. 112, 192105 (2018)

    Article  ADS  Google Scholar 

  2. X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015)

    Article  ADS  Google Scholar 

  3. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

    Article  ADS  Google Scholar 

  4. Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)

    Article  ADS  Google Scholar 

  5. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.F. Yu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015)

    Article  Google Scholar 

  6. J. Guan, Z. Zhu, D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014)

    Article  ADS  Google Scholar 

  7. B. You, X. Wang, W. Mi, Prediction of spin–orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures. Phys. Chem. Chem. Phys. 17, 31253–31259 (2015)

    Article  Google Scholar 

  8. M. Tahir, U. Schwingenschlögl, Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013)

    Article  ADS  Google Scholar 

  9. B. You, X. Wang, Z. Zheng, W. Mi, Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys. Chem. Chem. Phys. 18, 7381–7388 (2016)

    Article  Google Scholar 

  10. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  11. Q. Gao, X. Li, M. Li, T. Wang, X. Huang, Q. Zhang, J. Li, Y. Jia, C. Xia, Realization of larger band gap opening of graphene and type-I band alignment with BN intercalation layer in graphene/MX2 heterojunctions. Phys. Rev. B 100, 115439 (2019)

    Article  ADS  Google Scholar 

  12. C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li, Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl. 10, 054064 (2018)

    Article  ADS  Google Scholar 

  13. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349 (2014)

    Article  ADS  Google Scholar 

  14. J.M. Langer, C. Delerue, M. Lannoo, H. Heinrich, Transition-metal impurities in semiconductors and heterojunction band lineups. Phys. Rev. B 38, 7723 (1988)

    Article  ADS  Google Scholar 

  15. A.T. Hanbicki, H.-J. Chuang, M.R. Rosenberger, C.S. Hellberg, S.V. Sivaram, K.M. McCreary, I.I. Mazin, B.T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018)

    Article  Google Scholar 

  16. M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. J. Mater. Chem. A 2, 7517–7525 (2014)

    Article  Google Scholar 

  17. L.-C. Tien, J.-L. Shih, Type-II α-In2S3/In2O3 nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency. RSC Adv. 6, 12561–12570 (2016)

    Article  Google Scholar 

  18. N. Song, Y. Wang, S. Ding, Y. Yang, J. Zhang, B. Xu, L. Yi, Y. Jia, The hydrogen storage behavior of Li-decorated monolayer WS2: a first-principles study. Vacuum 117, 63–67 (2015)

    Article  ADS  Google Scholar 

  19. Y. Yu, S.-Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014)

    Article  ADS  Google Scholar 

  20. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  21. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011)

    Article  ADS  Google Scholar 

  22. C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)

    Article  Google Scholar 

  23. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014)

    Article  Google Scholar 

  24. S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012)

    Article  ADS  Google Scholar 

  25. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  26. A. Samad, A. Shafique, Y.-H. Shin, Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 28, 175401 (2017)

    Article  ADS  Google Scholar 

  27. A. Samad, M. Noor-A-Alam, Y.-H. Shin, First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 4, 14316–14323 (2016)

    Article  Google Scholar 

  28. B. Modak, S.K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: a hybrid density functional study. J. Phys. Chem. C 119, 23503–23514 (2015)

    Article  Google Scholar 

  29. T. Jing, Y. Dai, W. Wei, X. Ma, B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M= W, Mo). Phys. Chem. Chem. Phys. 16, 18596–18604 (2014)

    Article  Google Scholar 

  30. S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751–758 (2017)

    Article  Google Scholar 

  31. J. Zhu, S. Xu, J. Ning, D. Wang, J. Zhang, Y. Hao, Gate-Tunable electronic structure of black phosphorus/HfS2 P-N van der Waals heterostructure with uniformly anisotropic band dispersion. J. Phys. Chem. C 121, 24845–24852 (2017)

    Article  Google Scholar 

  32. K. Ren, J. Yu, W. Tang, A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: a first-principles calculation. J. Appl. Phys. 126, 065701 (2019)

    Article  ADS  Google Scholar 

  33. K. Ren, C. Ren, Y. Luo, Y. Xu, J. Yu, W. Tang, M. Sun, Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X=Ge, Si) for water-splitting photocatalysis: a first-principles study. Phys. Chem. Chem. Phys. 21, 9949–9956 (2019)

    Article  Google Scholar 

  34. J. Xiao, M. Long, C.-S. Deng, J. He, L.-L. Cui, H. Xu, Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: a first-principles study. J. Phys. Chem. C 120, 4638–4646 (2016)

    Article  Google Scholar 

  35. L. Huang, J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure. Appl. Phys. Lett. 108, 083101 (2016)

    Article  ADS  Google Scholar 

  36. J. Yan, P. Li, Y. Ji, H. Bian, Y. Li, S.F. Liu, Earth-abundant elements doping for robust and stable solar-driven water splitting by FeOOH. J. Mater. Chem. A 5, 21478–21485 (2017)

    Article  Google Scholar 

  37. H.A. Abdulhussein, P. Ferrari, J. Vanbuel, C.J. Heard, A. Fielicke, P. Lievens, E. Janssens, R.L. Johnston, Altering CO binding on Gold Cluster Cations by Pd-doping. Nanoscale 11, 16130–16141 (2019)

    Article  Google Scholar 

  38. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  Google Scholar 

  39. X. Li, L. Zhang, X. Zang, X. Li, H. Zhu, Photo-promoted platinum nanoparticles decorated MoS2@graphene woven fabric catalyst for efficient hydrogen generation. ACS Appl. Mater. Interfaces 8, 10866–10873 (2016)

    Article  Google Scholar 

  40. W. Zan, W. Geng, H. Liu, X. Yao, Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures. Phys. Chem. Chem. Phys. 18, 3159–3164 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800501, KJQN201900542, KJ1703042), the Program for Leading Talents in Science and Technology Innovation of Chongqing City (No. cstc2014kjcxljrc0023), the Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0237), the National Natural Science Foundation of China (No. 11947105, 11904041), and Chongqing Normal University Fund Project (No. 17XLB012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglin Li or Yuting Cui.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cui, Y., Li, W. et al. Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study. Appl. Phys. A 126, 92 (2020). https://doi.org/10.1007/s00339-020-3290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3290-5

Keywords

Navigation