Skip to main content

Advertisement

Log in

d-ribose and pathogenesis of Alzheimer’s disease

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It is estimated that the global prevalence of dementia will rise as high as 24 million and predicted to be double in every 20 years which is attributed to the fact that the ageing population is increasing and so more individuals are at risk of developing neurodegenerative diseases like Alzheimer’s. Many scientists favored glycation of proteins such as tau, amyloid beta (Aβ) etc. as one of the important risk factor in Alzheimer’s disease (AD). Since, d-ribose shows highest glycation ability among other sugars hence, produces advanced glycation end products (AGEs) rapidly. However, there are several other mechanisms suggested by researchers through which d-ribose may cause cognitive impairments. There is a concern related to diabetic patients since they also suffer from d-ribose metabolism, may be more prone to AD risk. Thus, it is imperative that the pathogenesis and the pathways involved in AD progression are explored in the light of ribosylation and AGEs formation for identifying suitable diagnostics marker for early diagnosis or finding promising therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

adapted from with some modifications [91])

Fig. 4
Fig. 5
Fig. 6

adapted from with some modifications [89])

Similar content being viewed by others

References

  1. Dhanoa TS, Housner JA (2007) Ribose: more than a simple sugar? Curr Sports Med Rep 6:254–257

    PubMed  Google Scholar 

  2. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol Biosph 18:71–85

    CAS  PubMed  Google Scholar 

  3. Sutherland JD (2010) Ribonucleotides. Cold Spring Harb Perspect Biol 2:a005439

    PubMed  PubMed Central  Google Scholar 

  4. Wei Y et al (2012) D-ribose in glycation and protein aggregation. Biochim Biophys Acta. 1820:488–494

    CAS  PubMed  Google Scholar 

  5. Wu B et al (2015) Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6:33

    Google Scholar 

  6. Seuffer R (1977) A new method for the determination of sugars in cerebrospinal fluid (author's transl). J Clin Chem Clin Biochem 15:663–668

    CAS  PubMed  Google Scholar 

  7. Cai Y, Liu J, Shi Y, Liang L, Mou S (2005) Determination of several sugars in serum by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 1085:98–103

    CAS  PubMed  Google Scholar 

  8. Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039

    CAS  PubMed  Google Scholar 

  9. Su T, Xin L, He YG, Wei Y, Song YX, Li WW, Wang XM, He RQ (2013) The abnormally high level of Uric D-ribose for Type-2 diabetics. Progress Biochem Biophys 40:816–825

    Google Scholar 

  10. Lyu J, Yu LX, He YG, Wei Y, Rong-Qiao H et al (2019) A brief study of the correlation of urine D-ribose with MMSE Scores of patients with alzheimer’s disease and cognitively normal participants. Am J Urol Res 4:018–023

    Google Scholar 

  11. Schmidt R, Assem-Hilger E, Benke T, Dal-Bianco P, Delazer M, Ladurner G et al (2008) Sex differences in Alzheimer’s disease. Neuropsychiatry 22:1–15

    Google Scholar 

  12. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37–48

    PubMed  PubMed Central  Google Scholar 

  13. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ et al (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570:332

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer’s Disease. Cold Spring Harb Perspect Med 2:a006239

    PubMed  PubMed Central  Google Scholar 

  15. Bloom GS (2014) Amyloid β and Tau. The trigger and bullet in Alzheimer’s disease pathogenesis. JAMA Neurol 71:505–508

    PubMed  Google Scholar 

  16. Xie A, Gao J, Xu L, Meng D (2014) Shared mechanisms of neurodegeneration in alzheimer’s disease and parkinson’s disease. BioMed Res Int 2014:1–8

    Google Scholar 

  17. Oshiro S, Morioka MS, Kikuchi M (2011) Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci. https://doi.org/10.1155/2011/378278

    Article  PubMed  PubMed Central  Google Scholar 

  18. Finder VH, Glockshuber R (2007) Amyloid β Aggregation. Neurodegener Dis 4:13–27. https://doi.org/10.1159/000100355

    Article  CAS  PubMed  Google Scholar 

  19. Dubois B et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol 6:734–746

    PubMed  Google Scholar 

  20. Bondi MW et al (2002) Cognitive and neuropathologic correlates of Stroop Color-Word Test performance in Alzheimer’s disease. Neuropsychology 16:335–343

    PubMed  Google Scholar 

  21. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135

    CAS  PubMed  Google Scholar 

  22. Haass C et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    CAS  PubMed  Google Scholar 

  23. Johnson GV, Bailey CD (2003) The p38 MAP kinase signaling pathway in Alzheimer’s disease. Exp Neurol 183:263–268

    CAS  PubMed  Google Scholar 

  24. Sandbrink R, Masters CL, Beyreuther K (1996) APP gene family: alternative splicing generates functionally related isoforms. Ann NY Acad Sci 777:281–287

    CAS  PubMed  Google Scholar 

  25. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    CAS  PubMed  Google Scholar 

  26. Kang J et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    CAS  PubMed  Google Scholar 

  27. Epis R, Marcello E, Gardoni F, Luca MD (2012) Alpha, beta-and gamma-secretases in Alzheimer’s disease. Front Biosci S4:1126–1150

    CAS  Google Scholar 

  28. Sinha S et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540

    CAS  PubMed  Google Scholar 

  29. Zhang YW, Thompson R, Zhang H, Huaxi Xu (2011) APP processing in Alzheimer’s disease. Mole Brain 4:3

    CAS  Google Scholar 

  30. Hurtado DE et al (2010) Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177:1977–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leroy K et al (2012) Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol 181:1928–1940

    CAS  PubMed  Google Scholar 

  32. Nussbaum JM et al (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485:651–655

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seward ME et al (2013) Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126:1278–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rhein V, Song X, Wiesner A et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci USA 106(47):20057–20062

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao J, Irwin RW, Zhao L et al (2009) Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 106(34):14670–14675

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Islam BU, Jabir NR, Tabrez S (2019) The role of mitochondrial defects and oxidative stress in Alzheimer’s disease. J Drug Target. https://doi.org/10.1080/1061186X.2019.1584808

    Article  PubMed  Google Scholar 

  37. Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    CAS  PubMed  Google Scholar 

  38. Roberson ED et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    CAS  PubMed  Google Scholar 

  39. Ittner LM et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    CAS  PubMed  Google Scholar 

  40. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:6364–6369

    CAS  PubMed  PubMed Central  Google Scholar 

  41. King ME et al (2006) Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J Cell Biol 175:541–546

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vossel KA et al (2010) Tau reduction prevents A beta-induced defects in axonal transport. Science 330:198

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shipton OA et al (2011) Tau protein is required for amyloid beta-induced impairment of hippocampal long-term potentiation. J Neurosci 31:1688–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zempel H et al (2013) Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32:2920–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  45. La Ferla FM (2008) Amyloid β and tau in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    Google Scholar 

  46. Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222

    CAS  PubMed  Google Scholar 

  47. Han C, Lu Y, Wei Y, Liu Y, He R (2011) D-ribose induces cellular protein glycation and impairs mouse spatial cognition. PLoS ONE 6:e24623

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Harvey SC, Prabhakaran M (1986) Ribose puckering: structure, dynamics, energetics, and the pseudorotation cycle. J Am Chem Soc 108:6128–6136

    CAS  Google Scholar 

  49. Chen L, Wei Y, Wang X, He R (2009) D-ribosylated Tau forms globular aggregates with high cytotoxicity. Cell Mol Life Sci 66:2559–2571

    CAS  PubMed  Google Scholar 

  50. Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE 5:e9052

    PubMed  PubMed Central  Google Scholar 

  51. Wei Y, Chen L, Chen J, Ge L, He RQ (2009) Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10

    PubMed  PubMed Central  Google Scholar 

  52. Han C et al (2014) D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation. Cell Death Dis 5:e1117

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Monnier VM (1990) Non-enzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45:B105–B111

    CAS  PubMed  Google Scholar 

  54. Syrovy I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods 28:115–121

    CAS  PubMed  Google Scholar 

  55. Culbertson SM, Vassilenko EI, Morrison LD, Ingold KU (2003) Paradoxical impact of antioxidants on post-Amadori glycoxidation: Counter intuitive increase in the yields of pentosidine and Nepsilon-carboxymethyl lysine using a novel multifunctional pyridoxamine derivative. J Biol Chem 278:38384–38394

    CAS  PubMed  Google Scholar 

  56. Bokiej M, Livermore AT, Harris AW, Onishi AC, Sandwick RK (2011) Ribose sugars generate internal glycation cross-links in horse heart myoglobin. Biochem Biophys Res Commun 407:191–196

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I (2016) D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta 1862:93–104

    Google Scholar 

  58. Emendato A et al (2018) Glycation affects fibril formation of Aβ peptides. J Biol Chem 293:13100–13111

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei Y, Han C, Wang Y, Wu B, Su T, Liu Y et al (2015) Ribosylation triggering Alzheimer’s disease-like Tau hyperphosphorylation via activation of CaMKII. Aging Cell 14:754–763

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu BB, Wei Y, Wang YJ, Su T, Zhou L, Liu Y et al (2015) Gavage of D-ribose induces A beta-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6:34128

    PubMed  PubMed Central  Google Scholar 

  61. Sims RC, Madhere S, Gordon S, Clark E Jr, Abayomi KA, Callender CO et al (2008) Relationships among blood pressure, triglycerides and verbal learning in African Americans. J Natl Med Assoc 100:1193–1198

    PubMed  Google Scholar 

  62. Chen Y, Yu L, Wei Y, Long Y, Xu Y, He T et al (2019) D-ribose increases triglyceride via upregulation of DGAT in the liver. Sci China Life Sci 62:858–861

    PubMed  Google Scholar 

  63. Chen Y, Yu L, Wang Y, Wei Y, Xu Y, He T et al (2019) D-ribose contributes to the glycation of serum protein. Biochim Biophys Acta Mol Basis Dis 9:2285–2292

    Google Scholar 

  64. Chen XX, Su T, Chen Y, He YG, Liu Y, Xu Y et al (2017) D-ribose as a contributor to glycated haemoglobin. EBio Med 25:143–153

    Google Scholar 

  65. Fu JP, Mo WC, Liu Y, Bartlett PF, He RQ (2016) Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell 7:624–637

    PubMed  PubMed Central  Google Scholar 

  66. Zhang HT, Zhang ZJ, Mo WC, Hu PD, Ding HM, Liu Y et al (2017) Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase. Protein Cell 8:527–537

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bisht K, Sharma K, Tremblay ME (2018) Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 9:9–21

    PubMed  PubMed Central  Google Scholar 

  68. Ahmed N (2005) Advanced glycation end products–role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    CAS  PubMed  Google Scholar 

  69. Gkogkolou P, Böhm M (2012) Advanced glycation end products, Key players in skin aging? Dermato-Endocrinol 4:259–270

    CAS  Google Scholar 

  70. Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281

    CAS  PubMed  Google Scholar 

  71. Cance Mc DR et al (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    Google Scholar 

  72. Lyons TJ et al (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40:1010–1015

    CAS  PubMed  Google Scholar 

  73. Miyata T, Ypersele CV, Strihou KD, Baynes JWK (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399

    CAS  PubMed  Google Scholar 

  74. Dukic SS, Schinzel R, Riederer P, Munch G (2001) AGES in brain ageing: AGE inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2:19–34

    Google Scholar 

  75. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kikuchi S et al (2000) Detection of an Amadori product, 1-hexitol-lysine, in the anterior horn of the amyotrophic lateral sclerosis and spinobulbar muscular atrophy spinal cord: evidence for early involvement of glycation in motoneuron diseases. Acta Neuropathol 99:63–66

    CAS  PubMed  Google Scholar 

  77. Jabir NR, Ahmad S, Tabrez S (2017) An insight on the association of glycation with hepatocellular carcinoma. Sem Can Biol. https://doi.org/10.1016/j.semcancer.2017.06.005

    Article  Google Scholar 

  78. Cai Z et al (2015) Role of RAGE in Alzheimer’s Disease. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-015-0233-3

    Article  PubMed  Google Scholar 

  79. Salahuddin P, Rabbani G, Khan RH (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 19:407–437

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Takeuchi M et al (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105

    CAS  PubMed  Google Scholar 

  81. Woltjer RL, Maezawa I, Ou JJ, Montine KS, Montine TJ (2003) Advanced glycation end product precursor alters intracellular amyloid-beta/A beta PP carboxy-terminal fragment aggregation and cytotoxicity. J Alzheimers Dis 5:467–476

    CAS  PubMed  Google Scholar 

  82. Xu L, Zang P, Feng B, Qian Q (2014) Atorvastatin inhibits the expression of RAGE induced by advanced glycation end products on aortas in healthy Sprague-Dawley rats. Diabetol Metab Syndr 6:102

    PubMed  PubMed Central  Google Scholar 

  83. Wautier MP, Tessier FJ, Wautier JL (2014) Advanced glycation end products: a risk factor for human health. Ann Pharm Fr 72:400–408

    CAS  PubMed  Google Scholar 

  84. Yu SL, Wong CK, Szeto CC, Li EK, Cai Z, Tam LS (2014) Members of the receptor for advanced glycation end products axis as potential therapeutic targets in patients with lupus nephritis. Lupus 24:675–686

    PubMed  Google Scholar 

  85. Farmer DG, Ewart MA, Mair KM, Kennedy S (2014) Soluble receptor for advanced glycation end products (sRAGE) attenuates haemodynamic changes to chronic hypoxia in the mouse. Pulm Pharmacol Ther 29:7–14

    CAS  PubMed  Google Scholar 

  86. Heilman RM, Otoni CC, Jergens AE, Grutzner N, Suchodolski JS, Steiner JM (2014) Systemic levels of the anti-inflammatory decoy receptor soluble RAGE (receptor for advanced glycation end products) are decreased in dogs with inflammatory bowel disease. Vet Immunol Immunopathol 161:184–192

    Google Scholar 

  87. Sheng Z, Liu Y, Chen L, He R (2008) Nonenzymatic glycation of α-Synuclein and changes in its conformation. Prog Biochem Biophys 35:1202–1208

    CAS  Google Scholar 

  88. Sattarahmady N, Moosavi-Movahedi AA, Habibi-Rezaei M, Ahmadian S, Saboury AA, Heli H, Sheibani N (2008) Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr Res 343:2229–2234

    CAS  PubMed  Google Scholar 

  89. Wei Y, Miao JY, Liu Y (2012) Endogenous and exogenous factors in hyperphosphorylation of Tau in Alzheimer’s disease. Prog Biochem Biophys 39:778–784

    CAS  Google Scholar 

  90. Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 122:247–253

    PubMed  Google Scholar 

  91. Wiseman FK et al (2018) Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 141:2457–2474

    PubMed  PubMed Central  Google Scholar 

  92. Miles WR, Root HF (1922) Psychologic tests applied to diabetic patients. Arch Intern Med (Chic) 30:767–777. https://doi.org/10.1001/archinte.1922.00110120086003

    Article  Google Scholar 

  93. Sima AA (2010) Encephalopathies: the emerging diabetic complications. Acta Diabetol 47:279–293. https://doi.org/10.1007/s00592-010-0218-0

    Article  CAS  PubMed  Google Scholar 

  94. Zhu F, Jiang B, Ren R, Yang L (2018) Amplitude of peroneal compound motor action potential increases in type 2 diabetes with thyroid autoimmunity. Sci China Life Sci 61:988–991

    CAS  PubMed  Google Scholar 

  95. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 61:661–666

    PubMed  Google Scholar 

  96. Yu L, Chen Y, Xu Y, He Y, Wei Y, He R (2019) D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy. Aging 11:4943–4969

    PubMed  PubMed Central  Google Scholar 

  97. Chen Y, Yu L, Wang Y, Wei Y, Xu Y, He T, He Y (2019) D-Ribose contributes to the glycation of serum protein. BBA Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2019.05.005

    Article  Google Scholar 

  98. Wang Y, Shi C, Chen Y, Yu L, Li Y, Wei Y, Li W, He R (2019) Formaldehyde produced from d-ribose under neutral and alkaline conditions. Toxicol Rep 1:298–304

    Google Scholar 

  99. Wu B, Wang Y, Shi C, Chen Y, Yu L, Li J, Li W, Wei Y, He R (2019) Ribosylation-derived advanced glycation end products induce tau hyperphosphorylation through brain-derived neurotrophic factor reduction. J Alzheimer Dis. https://doi.org/10.3233/JAD-190158

    Article  Google Scholar 

  100. Nakamura A et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254

    CAS  PubMed  Google Scholar 

  101. Martins RN et al (2018) Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J Alzheimers Dis 62:965–992

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Butterfield AD, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer’s disease. Nat Rev Neurosci. https://doi.org/10.1038/s41583-019-0132-6

    Article  PubMed  Google Scholar 

  103. Jabir NR, Khan FR, Tabrez S (2018) Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther. https://doi.org/10.1111/cns.12971

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chairperson of Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh.

Author information

Authors and Affiliations

Authors

Contributions

MJ, MIA and HJ have equal contributions. SN guided, conceptualized and provided intellectual input and revise the final draft of the manuscript.

Corresponding author

Correspondence to Sufia Naseem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, M., Ahmad, M.I., Javed, H. et al. d-ribose and pathogenesis of Alzheimer’s disease. Mol Biol Rep 47, 2289–2299 (2020). https://doi.org/10.1007/s11033-020-05243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05243-7

Keywords

Navigation