Skip to main content

Advertisement

Log in

Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mangrove forest encroachment into coastal marsh habitats has been described in subtropical regions worldwide in recent decades. To better understand how soil processes may influence vegetation change, we studied soil surface elevation change, accretion rates, and soil subsurface change across a coastal salinity gradient in Florida, USA, an area with documented mangrove encroachment into saline marshes. Our aim was to identify if variations in the soil variables studied exist and to document any associated vegetation shifts. We used surface elevation tables and marker horizons to document the soil variables over 5 years in a mangrove-to-marsh transition zone or ecotone. Study sites were located in three marsh types (brackish, salt, and transition) and in riverine mangrove forests. Mangrove forest sites had significantly higher accretion rates than marsh sites and were the only locations where elevation gain occurred. Significant loss in surface elevation occurred at transition and salt marsh sites. Transition marshes, which had a significantly higher rate of shallow subsidence compared to other wetland types, appear to be most vulnerable to submergence or to a shift to mangrove forest. Submergence can result in herbaceous vegetation mortality and conversion to open water, with severe implications to the quantity and quality of wetland services provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andres, K. D., 2016. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. M.S. Thesis: Fort Myers, FL, Florida Gulf Coast University: 191 pp.

  • Andres, K. D., M. Savarese, B. Bovard & M. Parsons, 2019. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. Estuaries and Coasts 42: 1308–1327.

    Google Scholar 

  • Anisfeld, S. C., T. D. Hill & D. R. Cahoon, 2016. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuarine, Coastal and Shelf Science 170: 145–154.

    Google Scholar 

  • Armitage, A. R., W. E. Highfield, S. D. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10: e0125404.

    PubMed  PubMed Central  Google Scholar 

  • Bargar, N. N., S. R. Archer, J. L. Campbell, C. Huang, J. A. Morton & A. K. Knapp, 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research 116: G00K07.

    Google Scholar 

  • Baustian, J. J., I. A. Mendelssohn & M. A. Hester, 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382.

    Google Scholar 

  • Bianchi, T. S., M. A. Allison, J. Zhao, R. S. Comeaux, R. A. Feagin & R. W. Kulawardhana, 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7–16.

    CAS  Google Scholar 

  • Blasco, F., P. Saenger & E. Janodet, 1996. Mangroves as indicators of coastal change. Catena 27: 167–178.

    Google Scholar 

  • Booth, A. C., L. E. Soderqvist & M. C. Berry, 2014. Flow monitoring along the western Tamiami trail between County Road 92 and State Road 29 in support of the comprehensive Everglades Restoration Plan, 2007–2010. U.S. Geological Survey Data Series 831, U.S. Geological Survey, Reston, Virginia.

  • Brown, R. B., E. L. Stone & V. W. Carlisle, 1990. Soils. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Orlando: 35–69.

    Google Scholar 

  • Cahoon, D. R., 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

    Google Scholar 

  • Cahoon, D. R. & R. E. Turner, 1989. Accretion and canal impacts in a rapidly subsiding wetland II: feldspar marker horizon technique. Estuaries 12: 260–268.

    Google Scholar 

  • Cahoon, D. R. & J. C. Lynch, 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.

    Google Scholar 

  • Cahoon, D. R., D. J. Reed & J. W. Day Jr., 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Google Scholar 

  • Cahoon, D. R., J. R. French, T. Spencer, D. Reed & I. Möhher, 2000. Vertical accretion versus elevational adjustments in UK saltmarshes: an evaluation of alternative methodologies. In Pye, K. & J. R. L. Allen (eds), Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Special Publication 175. The Geographical Society of London, London: 223–238.

    Google Scholar 

  • Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt & B. C. Perez, 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.

    Google Scholar 

  • Cahoon, D. R., J. C. Lynch, B. C. Perez, B. Segura, R. D. Holland, C. Stelly, G. Stephenson & P. Hensel, 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.

    CAS  Google Scholar 

  • Cannicci, S., D. Burrows, S. Fratini, T. J. Smith III, J. Offenberg & F. Dahdouh-Guebas, 2008. Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquatic Botany 89: 186–200.

    Google Scholar 

  • Cavanaugh, K. C., J. D. Parker, S. C. Cook-Patton, I. C. Feller, A. P. Williams & J. R. Kellner, 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21: 1928–1938.

    PubMed  Google Scholar 

  • Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1–12.

    Google Scholar 

  • Clarke, P. J. & R. A. Kerrigan, 2002. The effects of seed predators on the recruitment of mangroves. Journal of Ecology 90: 728–736.

    Google Scholar 

  • Coldren, G. A., C. R. Barreto, D. D. Wykoff, E. M. Morrissey, J. A. Langley, I. C. Feller & S. K. Chapman, 2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 97: 3167–3175.

    CAS  PubMed  Google Scholar 

  • Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.

    CAS  Google Scholar 

  • Crosby, S. C., D. F. Sax, M. E. Palmer, H. S. Booth, L. A. Deegan, M. D. Bertness & H. M. Leslie, 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuarine, Coastal and Shelf Science 181: 93–99.

    Google Scholar 

  • Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse & R. Riva, 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences 114: 5941–5946.

    Google Scholar 

  • Day Jr., J. W., L. D. Britsch, S. R. Hawes, G. P. Shaffer, D. J. Reed & D. Cahoon, 2000. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.

    Google Scholar 

  • Day, J. W., G. P. Kemp, D. J. Reed, D. R. Cahoon, R. M. Boumans, J. J. Suhayda & R. Gambrell, 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240.

    Google Scholar 

  • DeLaune, R. D., J. A. Nyman & W. H. Patrick Jr., 1994. Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • Donnelly, M. & L. Walters, 2014. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries and Coasts 37: 1562–1571.

    Google Scholar 

  • Donoghue, J. F., 2011. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change 107: 17–33.

    Google Scholar 

  • Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion rapidly increases coastal carbon storage. Estuaries and Coasts 39: 385–396.

    CAS  Google Scholar 

  • Doyle, T. W., T. J. Smith III & M. B. Robblee, 1995. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. Journal of Coastal Research SI 21: 159–169.

    Google Scholar 

  • Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa & N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.

    CAS  Google Scholar 

  • Duever, M. J., J. F. Meeder, L. C. Meeder & J. M. McCollom, 1994. The climate of south Florida and its role in shaping the Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach: 225–248.

    Google Scholar 

  • Duke, N. C., J. M. Kovacs, A. D. Griffiths, L. Preece, D. J. E. Hill, P. van Oosterzee, J. Mackenzie, H. S. Morning & D. Burrows, 2017. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research 68: 1816–1829.

    Google Scholar 

  • Feher, L. C., M. J. Osland, K. T. Griffith, J. B. Grace, R. J. Howard, C. L. Stagg, N. M. Enwright, K. W. Krauss, C. A. Gabler, R. H. Day & K. Rogers, 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8: e01956.

    Google Scholar 

  • Flower, H., M. Rains & C. Fits, 2017. Visioning the future: scenarios modeling of the Florida coastal Everglades. Environmental Management 60: 989–1009.

    PubMed  Google Scholar 

  • Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology and Systematics 35: 557–581.

    Google Scholar 

  • Fraser, L. H. & J. P. Karnezis, 2005. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water depth differences. Wetlands 25: 520–530.

    Google Scholar 

  • Gabler, C. A., M. J. Osland, J. B. Grace, C. L. Stagg, R. H. Day, S. B. Hartley, N. M. Enwright, A. S. From, M. L. McCoy & J. L. McLeod, 2017. Macroclimate change expected to transform coastal wetland ecosystems this century. Nature Climate Change Letters 7: 142–147.

    Google Scholar 

  • Guo, H., C. Weaver, S. P. Charles, A. Whitt, S. Dastidar, P. D’Odorico, J. D. Fuentes, J. S. Kominoski, A. R. Armitage & S. C. Pennings, 2017. Coastal regime shifts: rapid response of coastal wetlands to changes in mangrove cover. Ecology 98: 762–772.

    PubMed  Google Scholar 

  • Guo, H., Y. Zhang, L. Zhenjiang & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19: 2765–2774.

    PubMed  Google Scholar 

  • Henry, K. M. & R. R. Twilley, 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29: 1273–1283.

    Google Scholar 

  • Howard, R. J., K. W. Krauss, N. Cormier, R. H. Day, J. Biagas & L. Allain, 2015. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers. Journal of Vegetation Science 26: 1198–1211.

    Google Scholar 

  • Howard, R. J., J. Biagas & L. Allain, 2016. Growth of common brackish marsh macrophytes under altered hydrologic and salinity regimes. Wetlands 36: 11–20.

    Google Scholar 

  • Howard, R. J., R. H. Day, K. W. Krauss, A. S. From, L. Allain & N. Cormier, 2017. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone. Restoration Ecology 25: 471–482.

    Google Scholar 

  • Howard, R. J., A. S. From & L. Allain, 2019. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. U.S. Geological Survey data release. https://doi.org/10.5066/P9XZYJ2X.

  • Howard, R. J. & P. S. Rafferty, 2006. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern Gulf of Mexico, USA. Environmental and Experimental Botany 56: 301–313.

    Google Scholar 

  • Jowsey, P. C., 1966. An improved peat sampler. New Phytologist 65: 245–248.

    Google Scholar 

  • Kearny, M. S., R. E. Grace & J. C. Stevenson, 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review 78: 205–220.

    Google Scholar 

  • Kelleway, J. J., K. Cavanaugh, K. Rogers, I. C. Feller, E. Ens, C. Doughty & N. Saintilan, 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23: 3967–3983.

    PubMed  Google Scholar 

  • Kelleway, J. J., N. Saintilan, P. I. MacReadie, C. G. Skilbeck, A. Zawadzki & P. J. Ralph, 2016. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biology 22: 1097–1109.

    PubMed  Google Scholar 

  • Kirwan, M. L. & J. P. Megonigal, 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

    CAS  PubMed  Google Scholar 

  • Kirwan, M. & S. Temmerman, 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28: 1801–1808.

    Google Scholar 

  • Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle & M. J. Barry, 2011. Sea-level rise and landscape change influence mangrove encroachment onto salt marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.

    Google Scholar 

  • Krauss, K. W., A. W. J. Demopoulos, N. Cormier, A. S. From, J. P. McClain-Counts & R. R. Lewis III, 2018. Ghost forests of Marco Island: mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Coastal, Estuarine and Shelf Science 212: 51–62.

    CAS  Google Scholar 

  • Krauss, K. W., K. L. McKee, C. E. Lovelock, D. R. Cahoon, N. Saintilan, R. Reef & L. Chen, 2014. How mangrove forests adjust to rising sea level. The New Phytologist 202: 19–34.

    PubMed  Google Scholar 

  • Lefor, M. W., W. C. Kennard & D. L. Civco, 1987. Relationship of salt-marsh plant distributions to tidal levels in Connecticut, USA. Environmental Management 11: 61–68.

    Google Scholar 

  • Lamers, L. P. M., L. L. Govers, I. C. J. M. Janssen, J. J. M. Geurts, M. E. W. Van der Welle, M. M. Van Katwijk, T. Van der Heide, J. G. M. Roelofs & A. J. P. Smolders, 2013. Sulfide as a soil phytotoxin – a review. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2013.00268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis III, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24: 403–418.

    Google Scholar 

  • Lewis III, R. R., E. C. Milbrandt, B. Brown, K. W. Krauss, A. S. Rovai, J. W. Beever III & L. L. Flynn, 2016. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forests management. Marine Pollution Bulletin 109: 764–771.

    CAS  PubMed  Google Scholar 

  • Li, S., I. A. Mendelssohn, H. Chen & W. H. Orem, 2009. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshwater Biology 54: 1909–1923.

    CAS  Google Scholar 

  • Lodge, T. E., 2010. The Everglades Handbook: Understanding the Ecosystem, 3rd ed. CRC Press, Boca Raton.

    Google Scholar 

  • Lonard, R. I., F. W. Judd & R. Stalter, 2013. The biological flora of coastal dunes and wetlands: Distichlis spicata (C. Linnaeus) E. Greene. Journal of Coastal Research 29: 106–117.

    Google Scholar 

  • Lovelock, C. E., I. C. Feller, R. Reef, S. Hickey & M. C. Ball, 2017. Mangrove dieback during fluctuating sea levels. Scientific Reports 7: 1680.

    PubMed  PubMed Central  Google Scholar 

  • Lugo, A. E., 1997. Old-growth mangrove forests in the United States. Conservation Biology 11: 11–20.

    Google Scholar 

  • Luo, M., J. Huang, W. Zhu & C. Tong, 2019. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827: 31–49.

    CAS  Google Scholar 

  • Maricle, B. R., D. R. Cobos & C. S. Campbell, 2007. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses. Environmental and Experimental Botany 60: 458–467.

    Google Scholar 

  • McCoy, E. D., H. R. Mushinsky, D. Johnson & W. E. Meshaka Jr., 1996. Mangrove damage caused by Hurricane Andrew on the southwestern coast of Florida. Bulletin of Marine Science 59: 1–8.

    Google Scholar 

  • Mcleod, E., G. L. Chmura, S. Bouillion, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Google Scholar 

  • McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Google Scholar 

  • McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multifactorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 1–14.

    Google Scholar 

  • McKee, K. L. & W. C. Vervaeke, 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24: 1224–1238.

    PubMed  Google Scholar 

  • McKee, K. L., D. R. Cahoon & I. C. Feller, 2007a. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Google Scholar 

  • McKee, K. L., J. E. Rooth & I. C. Feller, 2007b. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecological Applications 17: 1678–1693.

    PubMed  Google Scholar 

  • McKee, K. L., K. Rogers & N. Saintilan, 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. In Middleton, B. A. (ed.), Global Change and the Function and Distribution of Wetlands. Springer, Dordrecht: 63–96.

    Google Scholar 

  • Meeder, J. F., R. W. Parkinson, P. L. Ruiz & M. S. Ross, 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, southeast saline Everglades, Florida. Hydrobiologia 803: 29–48.

    Google Scholar 

  • Mendelssohn, I. A. & K. L. McKee, 1988. Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. Journal of Ecology 76: 509–521.

    Google Scholar 

  • Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Response of coastal wetlands to rising sea levels. Ecology 83: 2869–2877.

    Google Scholar 

  • Morton, R. A., J. C. Bernier & J. A. Barras, 2006. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environmental Geology 50: 261–274.

    Google Scholar 

  • NOAA, 2018a. Tides and Currents, Station Information. https://tidesandcurrents.noaa.gov/stationhome.html?id=8724963. Accessed 27 Sept 2018.

  • NOAA, 2018b. Tides and Currents, Sea Level Trends. https://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml. Accessed 20 Mar 2018.

  • Nyman, J. A., R. D. DeLaune, H. H. Roberts & W. H. Patrick Jr., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

    Google Scholar 

  • Nyman, J. A., R. J. Walters, R. D. DeLaune & W. H. Patrick Jr., 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Google Scholar 

  • Odum, W. E. & C. C. McIvor, 1990. Mangroves. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Gainesville: 517–548.

    Google Scholar 

  • Osland, M. J., R. H. Day, J. C. Larriviere & A. S. From, 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9: e99604.

    PubMed  PubMed Central  Google Scholar 

  • Osland, M. J., K. T. Griffith, J. C. Larriviere, L. C. Feher, D. R. Cahoon, et al., 2017. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: gaps and opportunities for developing a coordinated regional sampling network. PloS ONE 12: e0183431.

    PubMed  PubMed Central  Google Scholar 

  • Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimate drivers within costal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.

    PubMed  Google Scholar 

  • Patterson, C. S., I. A. Mendelssohn & E. M. Swenson, 1993. Growth and survival of Avicennia germinans seedlings in a mangle/salt marsh community in Louisiana, USA. Journal of Coastal Research 9: 801–810.

    Google Scholar 

  • Pellegrini, A. F. A., W. A. Hoffman & A. C. Franco, 2014. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95: 342–352.

    PubMed  Google Scholar 

  • Perry, C. L. & I. A. Mendelssohn, 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29: 396–406.

    Google Scholar 

  • Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across and ecotone. Ecology 93: 1648–1658.

    PubMed  Google Scholar 

  • Reed, D. J., 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

    Google Scholar 

  • Reed, D. J., 1999. Response of mineral and organic components of coastal marsh accretion to global climate change. Current Topics in Wetland Biogeochemistry 3: 90–99.

    Google Scholar 

  • Richard, D. R. & D. A. Friess, 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences 113: 344–349.

    Google Scholar 

  • Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

    Google Scholar 

  • Rogers, K., K. M. Wilton & N. Saintilan, 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569.

    Google Scholar 

  • Rogers, K., N. Saintilan, A. J. Howe & J. F. Rodríguez, 2013. Sedimentation, elevation, and marsh evolution in a southwestern Australian estuary during changing climatic conditions. Estuarine, Coastal and Shelf Science 133: 172–181.

    Google Scholar 

  • Ross, M. E., J. F. Meeder, J. P. Sah, P. L. Ruiz & G. J. Telesnicki, 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.

    Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

    PubMed  Google Scholar 

  • Sallenger Jr., A. H., K. S. Doran & P. A. Howd, 2012. Hotspots of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

    Google Scholar 

  • Scharenbroch, B. C., M. L. Flores-Mangual, B. Lepore, J. G. Bockheim & B. Lowery, 2010. Tree encroachment impacts carbon dynamics in a sand prairie in Wisconsin. Soil Science Society of America Journal 74(956–96): 8.

    Google Scholar 

  • Schepers, L., M. Kirwan, G. Guntenspergen & S. Temmerman, 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62: 137–150.

    Google Scholar 

  • Sherman, R. E., T. J. Fahey & J. J. Battles, 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88: 165–178.

    Google Scholar 

  • Sherrod, C. L., D. L. Hockaday & C. McMillan, 1986. Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science 29: 27–36.

    Google Scholar 

  • Shiflet, T. N., 1963. Major ecological factors controlling plant communities in Louisiana marshes. Journal of Range Management 16: 231–235.

    Google Scholar 

  • Simpson, L. T., T. Z. Osborne, L. J. Duckett & I. C. Feller, 2017. Carbon storage along a climate induced coastal wetland gradient. Wetlands 37: 1023–1035.

    Google Scholar 

  • Simpson, L. T., C. M. Stein, T. Z. Osborne & I. C. Feller, 2019. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 834: 13–26.

    Google Scholar 

  • Smith III, T. J., M. B. Robblee, H. R. Wanless & T. W. Doyle, 1994. Mangroves, hurricanes, and lightning strikes. BioScience 44: 256–262.

    Google Scholar 

  • Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries and Coasts 30: 214–225.

    Google Scholar 

  • Stevens, P. W., S. L. Fox & C. L. Montague, 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14: 435–444.

    Google Scholar 

  • Stevenson, J. C., M. S. Kearney & E. C. Pendleton, 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67: 213–235.

    Google Scholar 

  • Törnqvist, T. E., D. J. Wallace, J. E. A. Storms, J. Wallinga, R. L. Van Dam, M. Blaauw, M. S. Derksen, C. J. W. Klerks, C. Meijneken & E. M. A. Snijders, 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience 1: 173–176.

    Google Scholar 

  • U.S. Army Corps of Engineers, 2019. Picayune Strand Restoration Project facts and information. https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll11/id/3143. Accessed 1 Sept 2019.

  • Yando, E. S., M. J. Osland, J. M. Willis, R. H. Day, K. W. Krauss & M. W. Hester, 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology 104: 1020–1031.

    CAS  Google Scholar 

  • Yuill, B., D. Lavoie & D. J. Reed, 2009. Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research SI54: 23–36.

    Google Scholar 

  • Valle-Levinson, A., A. Dutton & J. B. Martin, 2017. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophysical Research Letters. https://doi.org/10.1002/2017GL073926.

    Article  Google Scholar 

  • Visser, J. M. & E. R. Sandy, 2009. The effects of flooding on four common Louisiana marsh plants. Gulf of Mexico Science 1: 21–29.

    Google Scholar 

  • Wahl, T., F. M. Calafat & M. E. Luther, 2014. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophysical Research Letters. https://doi.org/10.1002/2013GL058777.

    Article  Google Scholar 

  • Watson, E. B., H. M. Andrews, A. Fischer, M. Cencer, L. Coiro, S. Kelley & C. Wigand, 2015. Growth and photosynthesis responses of two co-occurring marsh grasses to inundation and varied nutrients. Botany 93: 671–683.

    CAS  Google Scholar 

  • Webb, E. L., D. A. Friess, K. W. Krauss, D. R. Cahoon, G. Guntenspergen & J. Phelps, 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Google Scholar 

  • Wilson, K. R., J. T. Kelley, B. R. Tanner & D. F. Belknap, 2010. Probing the origins and stratigraphic signature of salt ponds from north-temperate marshes in Maine, U.S.A. Journal of Coastal Research 26: 1007–1026.

    Google Scholar 

  • Zhang, Y., G. Huang, W. Wang, L. Chen & G. Lin, 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 9: 588–597.

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the U.S. Fish and Wildlife Service (Intragovernmental Agreements 4500035235, 4500081468) and the U.S. Geological Survey Ecosystems Mission Area. We thank Kevin Godsea, Wade Gurley, and Mark Danaher, U.S. Fish and Wildlife Service, for logistical and technical support. Darren Johnson, Cherokee Nation Technologies, Wetland and Aquatic Research Center, provided data analyses. Comments provided by Donald Cahoon and anonymous reviewers helped to improve the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The data are available at https://doi.org/10.5066/P9XZYJ2X (Howard et al., 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Howard.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, R.J., From, A.S., Krauss, K.W. et al. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. Hydrobiologia 847, 1087–1106 (2020). https://doi.org/10.1007/s10750-019-04170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04170-4

Keywords

Navigation