Skip to main content
Log in

Surface modification influenced properties of silicon nanowires grown by Ag assisted chemical etching with ECR hydrogen plasma treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon nanowires (SiNWs) are fabricated by Ag assisted chemical etching and are treated with hydrogen plasma created by electron cyclotron resonance (ECR) plasma system at 600 watts microwave power for various time durations (0–30 min). The hydrogen plasma exposure on the surface of the SiNWs reduced the surface roughness and increased the crystalline nature. SEM analysis revealed that the diameter of the SiNWs decreased on plasma exposure. The electrical conduction measurements suggested that the hydrogen plasma exposure for 5 min on the SiNW surface enhanced the electrical conductivity when compared to as fabricated SiNW surface. The hydrophobic nature of fabricated SiNWs was transformed to hydrophilic at plasma exposure for lower time duration. On plasma exposure of NWs for 30 min the sample turned hydrophobic. Study of different properties of the SiNWs before and after plasma treatment revealed that there is pronounced effect of plasma on the nature of SiNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885 (2007)

    Article  CAS  Google Scholar 

  2. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon. 3, 569 (2009)

    Article  CAS  Google Scholar 

  3. X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 77, 2572 (2000)

    Article  CAS  Google Scholar 

  4. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285 (2011)

    Article  CAS  Google Scholar 

  5. C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 53, 5509 (2008)

    Article  CAS  Google Scholar 

  6. A. Najar, A.B. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat et al., Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. J. Appl. Phys. 112, 033502 (2012)

    Article  Google Scholar 

  7. P. Dutta, S. Paul, D. Galipeau, V. Bommisetty, Effect of hydrogen plasma treatment on the surface morphology, microstructure and electronic transport properties of nc-Si:H. Thin Solid Films 518, 6811 (2010)

    Article  CAS  Google Scholar 

  8. S. Sriraman, S. Agarwal, E.S. Aydil, D. Maroudas, Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 62, 418 (2002)

    Google Scholar 

  9. B. Garrido, A. Perez-Rodriguez, J.R. Mornte, A. Achiq, F. Gourbilleau, R. Madelon, R. Rizk, Structural, optical, and electrical properties of nanocrystalline silicon films deposited by hydrogen plasma sputtering. J. Vac. Sci. Technol. B 16, 1851 (1998)

    Article  CAS  Google Scholar 

  10. W.B. Choi, C.M. Ju, J.S. Lee, M.Y. Sung, Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment. J. Korean Phys. Soc. 37, 878 (2000)

    Article  CAS  Google Scholar 

  11. S. Sriraman, M.S. Valipa, E.S. Aydil, D. Maroudas, Hydrogen-induced crystallization of amorphous silicon thin films. J. Appl. Phys. 100, 053514 (2006)

    Article  Google Scholar 

  12. C. Godet, N. Layadi, P.R. Cabarrocas, Role of mobile hydrogen in the amorphous silicon recrystallization. Appl. Phys. Lett. 66, 3146 (1995)

    Article  CAS  Google Scholar 

  13. I. Kaiser, N.H. Nickel, W. Fuhs, W. Pilz, Hydrogen mediated structural changes of amorphous and microcrystaline silicon. Phys. Rev. B 58, R1718 (1998)

    Article  CAS  Google Scholar 

  14. K.D. Vargheese, G.M. Rao, Electron cyclotron resonance plasma source for ion assisted deposition of thin films. Rev. Sci. Instrum. 71, 467 (2000)

    Article  CAS  Google Scholar 

  15. A.K. Srivastava, M. Dahimene, T. Grotjohn, J. Asmussen, Experimental characterization of a compact ECR ion source. Rev. Sci. Instrum. 63, 2556 (1992)

    Article  CAS  Google Scholar 

  16. R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals. Nanotechnology 25, 045703 (2014)

    Article  Google Scholar 

  17. S.C. Shiu, S.B. Lin, S.C. Hung, C.F. Lin, Influence of pre-surface treatment on the morphology of silicon nano wires by metal assisted chemical etching. Appl. Surf. Sci. 257, 1829 (2011)

    Article  CAS  Google Scholar 

  18. K. Madhavi, P. Suvarnaa, M. Ghosh, H. Shaik, G. Mohan Rao, Effect of plasma ion etching on Si nanowires towards superhydrophobicity. Mater. Today Proc. 3, 1907 (2016)

    Article  Google Scholar 

  19. B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22, 155606 (2011)

    Article  Google Scholar 

  20. F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello, S.T. Lee, Electron field emission from silicon nanowires. Appl. Phys. Lett. 75, 1700 (1999)

    Article  CAS  Google Scholar 

  21. A. Hochbaum, D. Gargas, Y. Hwang, P. Yang, Single crystalline mesoporous siliconnanowires. Nano Lett. 9, 3550 (2009)

    Article  CAS  Google Scholar 

  22. A. Patterson, The Scherer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  CAS  Google Scholar 

  23. M.F. Beaux, I.I.N.J. Bridges, M. DeHart, T.F. Bitterwolf, D.N. McIlroy, Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. Appl. Surf. Sci. 257, 5766 (2011)

    Article  CAS  Google Scholar 

  24. K. Ouraa, V.G. Lifshits, A.A. Saranina, A.V. Zotova, M. Katayamaa, Hydrogen interaction with clean and modified silicon surfaces. Surf. Sci. Rep. 35, 1 (1999)

    Article  Google Scholar 

  25. E.J. Nemanick, P.T. Hurley, L.J. Webb, D.W. Knapp, D.J. Michalak, B.S. Brunschwig, N.S. Lewis, Chemical and electrical passivation of single crystal silicon (100) surfaces through a two-step chlorination/alkylation process. J. Phys. Chem. B 110, 14770 (2006)

    Article  CAS  Google Scholar 

  26. E. San Andres, A. del Prado, I. Martil, G. Gonza lez-Dıaz, Bonding configuration and density of defects of SiO x H y thin films deposited by the electron cyclotron resonance plasma method. J. Appl. Phys. 94(12), 7462–7469 (2003)

    Article  CAS  Google Scholar 

  27. A.I. Belogorokhov, S.A. Gavrilov, P.K. Kashkarov, I.A. Belogorokhov, FTIR investigation of porous silicon formed in deutrofluoric acid based solutions. Phys. Status Solidi 202, 1581 (2005)

    Article  CAS  Google Scholar 

  28. X. Liu, R.K. Fu, C. Ding, P.K. Chu, Hydrogen plasma surface activation of silicon for biomedical applications. Biomol. Eng. 24, 113 (2007)

    Article  Google Scholar 

  29. X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16(2), 71 (2012)

    Article  CAS  Google Scholar 

  30. P. Dutta, M. Kumar, M. Rathi, S.P. Ahrenkiel, S. Paul, D. Galipeau, V. Bommisetty, Mechanism of the enhancement of electrical conductivity of nanocrystalline silicon due to hydrogen plasma treatment. J. Nanosci. Nanotechnol. 13(10), 6711–6720 (2013)

    Article  CAS  Google Scholar 

  31. C.H. Seager, D.S. Ginley, Passivation of grain boundaries in polycrystalline silicon. Appl. Phys. Lett. 34, 337 (1979)

    Article  CAS  Google Scholar 

  32. N.H. Nickel, N.M. Johnson, W.B. Jackson, Hydrogen passivation of grainboundary defects in polycrystalline silicon thin films. Appl. Phys. Lett. 62(25), 3285–3287 (1993)

    Article  CAS  Google Scholar 

  33. K. Saitoh, M. Kondo, M. Fukawa, T. Nishimiya, A. Matsuda, W. Fukato, I. Shimizu, Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon. Appl. Phys. Lett. 71, 3403 (1997)

    Article  CAS  Google Scholar 

  34. J. Tang, J. Shi, L. Zhou, Z. Ma, Fabrication and optical properties f silicon nanowires arrays by electroless Ag–catalyzed etching. Nano-Micro Lett. 3(2), 129 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Padma Suvarna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavi, K., Ghosh, M., Mohan Rao, G. et al. Surface modification influenced properties of silicon nanowires grown by Ag assisted chemical etching with ECR hydrogen plasma treatment. J Mater Sci: Mater Electron 31, 1904–1911 (2020). https://doi.org/10.1007/s10854-019-02709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02709-8

Navigation