Skip to main content
Log in

Strontium titanate with inverse opal structure as the photocatalysts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microstructure of the catalyst material is one of the most important factors affecting the photocatalytic performance. In this study, inverse opal structure strontium titanate (SrTiO3, STO) materials with different pore sizes (from 75 to 123 nm) were prepared, and employed as photocatalysts in the degradation of rhodamine B (RhB) dye. The results suggest that the highest photodegradation rate of the inverse opal structure photocatalyst reaches to 88.03%, which is greater than that of the non-inverse opal structure (50.42%) due to its complex three-dimensional porous microstructure. The effect of the pore size of the inverse opal structure STO on the photocatalytic properties was investigated. As the pore size of the inverse opal microstructure decreases, the photocatalytic degradation rate increases regularly, attributing to effective capture of light with decreasing of pore size. The photocatalytic degradation mechanism of inverse opal structure with different pore sizes is discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.J. Martin, G. Liu, S.J. Moniz, Y. Bi, A.M. Beale, J. Ye et al., Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44(21), 7808–7828 (2015)

    Article  CAS  Google Scholar 

  2. L. Jing, W. Zhou, G. Tian, H. Fu, Surface tuning for oxide-based nanomaterials as efficient photocatalysts. J. Cheminformatics. 42(24), 9509–9549 (2013)

    CAS  Google Scholar 

  3. J. Xie, Y. He, J. Tang, Y. Wang, M. Chamas, H. Wang, Pore size distribution dependent controlling selective degradation of binary dye effluent. J. Mol. Liq. 250, 388–395 (2018)

    Article  CAS  Google Scholar 

  4. J. Cai, M. Wu, Y. Wang, Y. Wang, H. Zhang, M. Meng et al., Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem. 2(6), 877–892 (2017)

    Article  CAS  Google Scholar 

  5. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–20862 (1987)

    Article  CAS  Google Scholar 

  6. S. John, Strong localization of photons in the certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  CAS  Google Scholar 

  7. G. Collins, E. Armstrong, D. McNulty, S. O’Hanlon, H. Geaney, C. O’Dwyer, 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Sci. Technol. Adv. Mater. 17(1), 563–582 (2016)

    Article  CAS  Google Scholar 

  8. S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein et al., Standing Wave Enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125(20), 6306–6310 (2003)

    Article  CAS  Google Scholar 

  9. S.-H.A. Lee, N.M. Abrams, P.G. Hoertz, G.D. Barber, L.I. Halaoui, T.E. Mallouk, Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J. Phys. Chem. B 112(46), 14415–14421 (2008)

    Article  CAS  Google Scholar 

  10. Y. Li, F. Piret, T. Léonard, B.-L. Su, Rutile TiO2 inverse opal with photonic bandgap in the UV–Visible range. J. Colloid Interface Sci. 348(1), 43–48 (2010)

    Article  CAS  Google Scholar 

  11. M. Wu, Y. Li, Z. Deng, B.-L. Su, Three-dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency. Chemsuschem 4(10), 1481–1488 (2011)

    Article  CAS  Google Scholar 

  12. M. Wu, A. Zheng, F. Deng, B.-L. Su, Significant photocatalytic activity enhancement of titania inverse opals by anionic impurities removal in dye molecule degradation. Appl. Catal. B 138–139, 219–228 (2013)

    Article  Google Scholar 

  13. D. Qi, L. Lu, Z. Xi, L. Wang, J. Zhang, Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl. Catal. B 160–161, 621–628 (2014)

    Article  Google Scholar 

  14. J.I. Chen, G.V. Freymann, S.Y. Choi, V. Kitaev, G.A. Ozin, Amplified photochemistry with slow photons. Adv. Mater. 18(14), 1915–1919 (2006)

    Article  CAS  Google Scholar 

  15. M. Srinivasan, T. White, Degradation of methylene blue by three-dimensionally ordered macroporous titania. Environ. Sci. Technol. 41(12), 4405–4409 (2007)

    Article  CAS  Google Scholar 

  16. Q. Li, J.K. Shang, Inverse opal structure of nitrogen-doped titanium oxide with enhanced visible-light photocatalytic activity. J. Am. Ceram. Soc. 91(2), 660–663 (2008)

    Article  CAS  Google Scholar 

  17. J.I. Chen, G.A. Ozin, Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects. J. Mater. Chem. 19(18), 2675–2678 (2009)

    Article  CAS  Google Scholar 

  18. J. Xu, B. Yang, M. Wu, Z. Fu, Y. Lv, Y. Zhao, Novel N−F-codoped TiO2 inverse opal with a hierarchical meso-/macroporous structure: synthesis, characterization, and photocatalysis. J. Phys. Chem. C. 114(36), 15251–15259 (2010)

    Article  CAS  Google Scholar 

  19. F. Sordello, C. Duca, V. Maurino, C. Minero, Photocatalytic metamaterials: TiO2 inverse opals. Chem. Commun. 47(21), 6147–6149 (2011)

    Article  CAS  Google Scholar 

  20. Y. Lu, H. Yu, S. Chen, X. Quan, H. Zhao, Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ. Sci. Technol. 46(3), 1724–1730 (2012)

    Article  CAS  Google Scholar 

  21. S. Sun, W. Wang, L. Zhang, Facile preparation of three-dimensionally ordered macroporous Bi2WO6 with high photocatalytic activity. J. Mater. Chem. 22(36), 19244 (2012)

    Article  CAS  Google Scholar 

  22. Y. Wang, H. Dai, J. Deng, Y. Liu, H. Arandiyan, X. Li et al., 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci. 24, 62–70 (2013)

    Article  Google Scholar 

  23. Y. Wang, H. Dai, J. Deng, Y. Liu, Z. Zhao, X. Li et al., Three-dimensionally ordered macroporous InVO4: fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chem. Eng. J. 226, 87–94 (2013)

    Article  CAS  Google Scholar 

  24. K. Ji, J. Deng, H. Zang, J. Han, H. Arandiyan, H. Dai, Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Appl. Catal. B 165, 285–295 (2015)

    Article  CAS  Google Scholar 

  25. M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ueda, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J. Mater. Chem. 20(9), 1811–1818 (2010)

    Article  CAS  Google Scholar 

  26. X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou, Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5(6), 4310–4318 (2011)

    Article  CAS  Google Scholar 

  27. K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie et al., 3DOM BiVO4 supported silver bromide and noble metals: high-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Appl. Catal. B 168–169, 274–282 (2015)

    Article  Google Scholar 

  28. S.-L. Chen, A.-J. Wang, C. Dai, J.B. Benziger, X.-C. Liu, The effect of photonic band gap on the photo-catalytic activity of nc-TiO2/SnO2 photonic crystal composite membranes. Chem. Eng. J. 249, 48–53 (2014)

    Article  CAS  Google Scholar 

  29. L. Chen, L. Xie, M. Wang, X. Ge, Preparation of three-dimensional inverse opal SnO2/graphene composite microspheres and their enhanced photocatalytic activities. J. Mater. Chem. A 3(6), 2991–2998 (2015)

    Article  CAS  Google Scholar 

  30. J. Xie, C. Yang, Y. He, H. Wang, Effect of pH on the phase transformation of strontium titanium materials and their photocatalytic property. J. Mater. Sci. 29, 19344–19352 (2018)

    CAS  Google Scholar 

  31. J. Xie, C. Yang, M. Duan, J. Tang, Y. Wang, H. Wang et al., Amorphous NiP as cocatalyst for photocatalytic water splitting. Ceram. Int. 44(5), 5459–5465 (2018)

    Article  CAS  Google Scholar 

  32. J. Xie, Y. He, B. Liu, H. Wang, A novel insight of photodegradation of dye mixture by surface analysis. Catal. Commun. 120, 101–105 (2019)

    Article  CAS  Google Scholar 

  33. K. Yu, C. Zhang, Y. Chang, Y. Feng, Z. Yang, T. Yang et al., Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Appl. Catal. B 200, 514–520 (2017)

    Article  CAS  Google Scholar 

  34. P. Zhou, D. Zhou, L. Tao, Y. Zhu, W. Xu, S. Xu et al., 320-fold luminescence enhancement of [Ru(dpp)3]Cl2 dispersed on PMMA opal photonic crystals and highly improved oxygen sensing performance. Light Sci. Appl. 3(10), e209 (2014)

    Article  CAS  Google Scholar 

  35. J. Xie, Y. He, X. Li, M. Duan, J. Tang, Y. Wang et al., Adjustable band position of strontium titanate by doping-free solvents effect and its correlation with photodegradation performance. J. Mater. Sci. 28(20), 14981–14987 (2017)

    CAS  Google Scholar 

  36. J. Wang, P. Guo, M. Dou, J. Wang, Y. Cheng, Z. Zhao et al., Visible light-driven g-C3N4/m-Ag2Mo2O7 composite photocatalysts: synthesis, enhanced activity and photocatalytic mechanism. RSC Adv. 4(92), 51008–51015 (2014)

    Article  CAS  Google Scholar 

  37. W. Wang, H. Song, X. Bai, Q. Liu, Y. Zhu, Modified spontaneous emissions of europium complex in weak PMMA opals. Phys. Chem. Chem. Phys. 13(40), 18023–18030 (2011)

    Article  CAS  Google Scholar 

  38. Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, Y. Gu, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater. 271, 150–159 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Foundation of Sichuan Science and Technology Agency (Grant No. 2018RZ0043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Xie or Hu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Lei, K., Wang, H. et al. Strontium titanate with inverse opal structure as the photocatalysts. J Mater Sci: Mater Electron 31, 2691–2698 (2020). https://doi.org/10.1007/s10854-019-02809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02809-5

Navigation