Skip to main content
Log in

Deactivation of Co-Al2O3/SiO2 Fischer–Trospch Synthesis Catalyst in Industrially Relevant Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The deactivation rate of Co-Al2O3/SiO2 Fischer–Tropsch synthesis catalyst have been experimentally assessed at industrially relevant conditions (T 198–237 °C, P = 60 bar, H2/CO = 1.85, GHSV 2000–7000 h–1). The fresh and spent catalyst was characterized by XRD, XPS, BET, TEM, and SEM–EDX techniques. Decreasing active surface area due to cobalt oxidation by product water and sintering of cobalt crystallites were found to be minor factors for the deactivation. The principal reason of activity loss seems is diffusion limitations arising due to catalyst pores plugging by product wax. The linear dependence between gas flow rate and estimated catalyst lifetime was revealed. High GHSV of fresh synthesis gas and/or high circulation ratio of product gas should be employed to prevent rapid loss of catalyst activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steynberg AP, Dry M (2004) Stud Surf Sci Catal 152:1

    Article  CAS  Google Scholar 

  2. Dry ME (2004) Appl Catal A 276:1

    Article  CAS  Google Scholar 

  3. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  4. Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030

    Article  CAS  Google Scholar 

  5. Rytter E, Tsakoumis NE, Holmen A (2016) Catal. Today 261:3

    Article  CAS  Google Scholar 

  6. Freund M (1982) Developments in petroleum science, Vol. 14, In: Freund M, Mózes GY (eds) Elsevier Scientific Publishing Company: Amsterdam

    Google Scholar 

  7. Bekker M, Louw NR, Van Rensburg VJJ, Potgiete J (2013) Int J Cosmet Sci 35:99

    Article  CAS  Google Scholar 

  8. Dobratz BM, Crawford PC (1985) LLNL explosive handbook: properties of chemical explosives and explosive simplants. Livermore, California

    Google Scholar 

  9. Van Berge PJ, Everson RC (1997) Stud Surf Sci Catal 107:207

    Article  Google Scholar 

  10. Sparks DE, Jacobs G, Gnanamani MK, Pendyala VRR, Ma W, Kang J, Shafer WD, Keogh RA, Graham UM, Gao P, Davis BH (2013) Catal Today 215:67

    Article  CAS  Google Scholar 

  11. Saib AM, Moodley DJ, Ciobîcă IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271

    Article  CAS  Google Scholar 

  12. Espinoza RL, Steynberg AP, Jager B, Vosloo AC (1999) Appl Catal A 186:13

    Article  CAS  Google Scholar 

  13. Van Berge PJ, van de Loosdrecht J, Barradas S, van der Kraan AM (2000) Catal Today 58:321

    Article  Google Scholar 

  14. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Geus JW, Niemantsverdriet JW (2006) J Catal 239:326

    Article  CAS  Google Scholar 

  15. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A 186:169

    Article  CAS  Google Scholar 

  16. Bian GZ, Fujishita N, Mochizuki T, Ning WS, Yamada M (2003) Appl Catal A 252:251

    Article  CAS  Google Scholar 

  17. Kiss G, Kliewer CE, DeMartin GJ, Culross CC, Baumgartner JE (2003) J Catal 217:127

    CAS  Google Scholar 

  18. Overett MJ, Breedt B, du Plessis E, Erasmus W, van de Loosdrecht J (2008) Prepr Pap-Am Chem Soc Div Pet Chem 53:126

    CAS  Google Scholar 

  19. Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Bavis BH (2002) Appl Catal A 233:215

    Article  CAS  Google Scholar 

  20. Li JL, Zhan XD, Zhang YQ (2002) Appl Catal A 228:203

    Article  CAS  Google Scholar 

  21. Pennline HW, Gormley RJ, Schehl RR (1984) Ind Eng Chem Prod Res Dev 23:388

    Article  CAS  Google Scholar 

  22. Pennline HW, Pollack SS (1986) Ind Eng Chem Prod Res Dev 23:11

    Article  Google Scholar 

  23. Niemela MK, Krause AOI (1996) Catal Lett 42:161

    Article  CAS  Google Scholar 

  24. Van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3577

    Google Scholar 

  25. Li JL, Davis BH (2004) Stud Surf Sci Catal 147:307

    Article  CAS  Google Scholar 

  26. Krishnamoorthy S, Tu M, Ojeda MP, Pinna D, Iglesia E (2002) J Catal 211:422

    Article  CAS  Google Scholar 

  27. Bartholomew CH (2001) Appl Catal A 212:17

    Article  CAS  Google Scholar 

  28. Das TK, Jacobs G, Patterson PM, Conner WA, Li J, Davis BH (2003) Fuel 82:805

    Article  CAS  Google Scholar 

  29. Jacobs G, Patterson PM, Das TK, Luo M, Davis BH (2004) Appl Catal A 270:65

    Article  CAS  Google Scholar 

  30. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210

    Article  CAS  Google Scholar 

  31. Moodley DJ, van de Loosdrecht J, Saib AM, Overett MJ, Datye AK, Niemantsverdriet JW (2009) Appl Catal A 354:102

    Article  CAS  Google Scholar 

  32. Narochnyi GB, Yakovenko RE, Savost’yanov AP, Bakun VG (2016) Catal Ind 8:139

    Article  Google Scholar 

  33. Savost’yanov AP, Yakovenko RE, Sulima SI, Bakun VG, Narochnyi GB, Chernyshev VM, Mitchenko SA (2017) Catal Today 279:107

    Article  Google Scholar 

  34. Savost’yanov AP, Narochnyi GB, Yakovenko RE, Mitchenko SA, Zubkov IN (2018) Pet Chem 58:76

    Article  Google Scholar 

  35. Savost’yanov AP, Yakovenko RE, Narochnyi GB, Sulima SI, Bakun VG, Soromotin VN, Mitchenko SA (2017) Catal Commun 99:25

    Article  Google Scholar 

  36. International Centre for Diffraction Data (ICDD), PDF-2 Release 2012 https://www.icdd.com/index.php/pdf-2/

  37. Kashin AS, Ananikov VP (2011) Russ Chem Bull 60:2602

    Article  CAS  Google Scholar 

  38. Kachala K, Khemchyan LL, Kashin AS, Orlov NV, Grachev AA, Zalesskiy SS, Ananikov VP (2013) Russ Chem Rev 82:648

    Article  Google Scholar 

  39. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (state task no. 10.2980.2017/4.6). XPS spectra analysis was supported by the project no 3.6105.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg L. Eliseev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savost’yanov, A.P., Eliseev, O.L., Yakovenko, R.E. et al. Deactivation of Co-Al2O3/SiO2 Fischer–Trospch Synthesis Catalyst in Industrially Relevant Conditions. Catal Lett 150, 1932–1941 (2020). https://doi.org/10.1007/s10562-020-03097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03097-z

Keywords

Navigation