Skip to main content
Log in

A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via  peptide-copper(II) nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Biotinylated peptide-Cu2+ nanoparticles (Cu-P NPs) were synthesized via “one-pot” self-assembly. The peptide P conststs of a hydrophobic dipeptide (FF), a tripeptide (KGH), and a biotin moiety attached to the terminal amino group of the Lys residue. The Cu-P NPs contain abundant catalytically active Cu2+ ions which are liberated by acid-induced dissolution. The released Cu2+ ions catalyze the oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 because of their intrinsic peroxidase activity, and this results in the formation of a blue-green coloration. Based on the streptavidin–biotin interaction, the Cu-P NPs were employed to establish an enzyme-free colorimetric method for determination of prostate-specific antigen (PSA) as a model biomarker. Under optimal conditions, the linear response range is 0.001–1 ng mL−1, with a limit of detection as low as 1 pg mL−1.

Schematic illustration of a colorimetric immunoassay for the prostate specific antigen (PSA) with biotinylated peptide-Cu2+ nanoparticle (Cu-P NP) as the signal label based on the streptavidin (SA)–biotin interaction. The signal was produced by Cu2+-catalyzed oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB). P: KGHFF

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39:50–56

    Article  CAS  Google Scholar 

  2. Zheng W, Jiang X (2016) Integration of nanomaterials for colorimetric immunoassays with improved performance: a functional perspective. Analyst 141:1196–1208

    Article  CAS  Google Scholar 

  3. Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC-Trend Anal Chem 105:391–403

    Article  CAS  Google Scholar 

  4. Wang C, Gao J, Tan H (2018) Integrated antibody with catalytic meta-organic framework for colorimetric immunoassay. ACS Appl Mater Interfaces 10:25113–25120

    Article  CAS  Google Scholar 

  5. Zhang L, Fan C, Liu M, Liu F, Bian S, Du S, Zhu S, Wang H (2018) Biominerized gold-Hemin@MOF composites with peroxidase-like andgold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA andgold-catalytic silver staining. Sensors Actuators B Chem 266:543–552

    Article  CAS  Google Scholar 

  6. Chu B, Qi T, Liao J, Peng J, Li W, Fu S, Luo F, Qian Z (2012) Colorimetric detection of cancer biomarker based on pH induced color change. Sensors Actuators B Chem 166:56–60

    Article  Google Scholar 

  7. Chen P, Jiang X, Huang K, Hu P, Li X, Wei L, Liu W, Wei L, Tao C, Ying B, Wei X, Geng J (2019) Multimode microRNA sensing via multiple enzyme-free signal amplification and cation-exchange reaction. ACS Appl Mater Interfaces 11:36476–36484

    Article  CAS  Google Scholar 

  8. Liu L, Hao Y, Deng D, Xia N (2019) Nanomaterials-based colorimetric immunoassays. Nanomaterials 9:316

    Article  CAS  Google Scholar 

  9. Li Y, Wu J, Zhang C, Chen Y, Wang Y, Xie M (2017) Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim Acta 184:2767–2774

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao C, Song X, Xu K, Wang J, Li J (2017) Colorimetric immunoassay for rapid detection of Vibrio parahaemolyticus. Microchim Acta 184:4785–4792

    Article  CAS  Google Scholar 

  11. Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, Lee J, Park EY, Lee J (2018) Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl Mater Interfaces 10:12534–12543

    Article  CAS  Google Scholar 

  12. Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059

    Article  CAS  Google Scholar 

  13. Zhang Z, Xu G, Xie L, Guan Y (2019) Colorimetric immunoassay for human chorionic gonadotropin by using peroxidase-mimickingMnO(2) nanorods immobilized in microplate wells. Microchim Acta 186:581

    Article  Google Scholar 

  14. de la Rica R, Stevens MM (2013) Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc 8:1759–1764

    Article  Google Scholar 

  15. Peng M-P, Ma W, Long Y-T (2015) Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal Chem 87:5891–5896

    Article  CAS  Google Scholar 

  16. Bui MP, Ahmed S, Abbas A (2015) Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett 15:6239–6246

    Article  CAS  Google Scholar 

  17. Ren R, Cai G, Yu Z, Tang D (2018) Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron(II) chelation reaction with phenanthroline. Sensors Actuators B Chem 265:174–181

    Article  CAS  Google Scholar 

  18. Shao F, Zhang L, Jiao L, Wang X, Miao L, Li H, Zhou F (2018) Enzyme-free immunosorbent assay of prostate specific antigen amplified by releasing pH indicator molecules entrapped in mesoporous silica nanoparticles. Anal Chem 90:8673–8679

    Article  CAS  Google Scholar 

  19. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973

    Article  CAS  Google Scholar 

  20. Holme MN, Rana S, Barriga HMG, Kauscher U, Brooks NJ, Stevens MM (2018) A robust liposomal platform for direct colorimetric detection of sphingomyelinase enzyme and inhibitors. ACS Nano 12:8197–8207

    Article  CAS  Google Scholar 

  21. Qu W, Liu Y, Liu D, Wang Z, Jiang X (2011) Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed 50:3442–3445

    Article  CAS  Google Scholar 

  22. Wu J, Xianyu Y, Wang X, Hu D, Zhao Z, Lu N, Xie M, Lei H, Chen Y (2018) Enzyme-free amplification strategy for biosensing using Fe(3+)-poly(glutamic acid) coordination chemistry. Anal Chem 90:4725–4732

    Article  CAS  Google Scholar 

  23. Li B, Lai G, Zhang H, Hu S, Yu A (2017) Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Anal Chim Acta 963:106–111

    Article  CAS  Google Scholar 

  24. Yu RJ, Ma W, Liu XY, Jin HY, Han HX, Wang HY, Tian H, Long YT (2016) Metal-linked immunosorbent assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum. Theranostics 6:1732–1739

    Article  CAS  Google Scholar 

  25. Li B, Lai G, Lin B, Yu A, Yang N (2018) Enzyme-induced biomineralization of cupric subcarbonate for ultrasensitive colorimetric immunosensing of carcinoembryonic antigen. Sensors Actuators B Chem 262:789–795

    Article  CAS  Google Scholar 

  26. Zheng A, Zhang X, Gao J, Liu X, Liu J (2016) Peroxidase-like catalytic activity of copper ions and its application for highly sensitive detection of glypican-3. Anal Chim Acta 941:87–93

    Article  CAS  Google Scholar 

  27. Zhu N, Zou Y, Huang M, Dong S, Wu X, Liang G, Han Z, Zhang Z (2018) A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples. Talanta 186:104–109

    Article  CAS  Google Scholar 

  28. Cheng F, Chen Z, Zhang Z, Chen L (2016) A highly sensitive colorimetric metalloimmunoassay based on copper-mediated etching of gold nanorods. Analyst 141:1918–1921

    Article  CAS  Google Scholar 

  29. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  CAS  Google Scholar 

  30. Zhao J, Yang L, Dai Y, Tang Y, Gong X, Du D, Cao Y (2018) Peptide-templated multifunctional nanoprobe for feasible electrochemical assay of intracellular kinase. Biosens Bioelectron 119:42–47

    Article  CAS  Google Scholar 

  31. Han A, Wang H, Kwok RT, Ji S, Li J, Kong D, Tang BZ, Liu B, Yang Z, Ding D (2016) Peptide-induced AIEgen self-assembly: a new strategy to realize highly sensitive fluorescent light-up probes. Anal Chem 88:3872–3878

    Article  CAS  Google Scholar 

  32. Shan Z, Lu M, Wang L, MacDonald B, MacInnis J, Mkandawire M, Zhang X, Oakes KD (2016) Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem Commun 52:2087–2090

    Article  CAS  Google Scholar 

  33. Gonzalez P, Bossak K, Stefaniak E, Hureau C, Raibaut L, Bal W, Faller P (2018) N-terminal Cu-binding motifs (Xxx-Zzz-His, Xxx-His) and their derivatives: chemistry, biology and medicinal applications. Chem Eur J 24:8029–8041

    Article  CAS  Google Scholar 

  34. Harford C, Sarkar B (1997) Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  35. Deng D, Liu L, Bu Y, Liu X, Wang X, Zhang B (2018) Electrochemical sensing devices using ATCUN-Cu(II) complexes as electrocatalysts for water oxidation. Sensors Actuators B Chem 269:189–194

    Article  CAS  Google Scholar 

  36. Xia N, Deng D, Yang S, Hao Y, Wang L, Liu Y, An C, Han Q, Liu L (2019) Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation. Sensors Actuators B Chem 291:113–119

    Article  CAS  Google Scholar 

  37. Hu P, Wang X, Wei L, Dai R, Yuan X, Huang K, Chen P (2019) Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein. J Mater Chem B 7:4778–4783

    Article  CAS  Google Scholar 

  38. Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184:3049–3067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Henan Province University Innovation Talents Support Program (18HASTIT005), the Science & Technology Foundation of Anyang City, and the First Class Discipline-Chemistry of Guizhou Education University (2019YLXKB03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Chang or Lin Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Xia, N., Yuan, F. et al. A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via  peptide-copper(II) nanoparticles. Microchim Acta 187, 116 (2020). https://doi.org/10.1007/s00604-019-4074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4074-5

Keywords

Navigation