Skip to main content
Log in

Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphite as a positive electrode material of dual ion batteries (DIBs) has attracted tremendous attentions for its advantages including low lost, high working voltage and high energy density. However, very few literatures regarding to the real-time observation of anion intercalation behavior and surface evolution of graphite in DIBs have been reported. Herein, we use in situ atomic force microscope (AFM) to directly observe the intercalation/de-intercalation processes of PF6 in graphite in real time. First, by measuring the change in the distance between graphene layers during intercalation, we found that PF6 intercalates in one of every three graphite layers and the intercalation speed is measured to be 2 µm·min−1. Second, graphite will wrinkle and suffer structural damages at high voltages, along with severe electrolyte decomposition on the surface. These findings provide useful information for further optimizing the capacity and the stability of graphite anode in DIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, M.; Tang, Y. B. A review on the features and progress of dual-ion batteries. Adv. Energy Mater.2018, 8, 1703320.

    Article  Google Scholar 

  2. Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev.2018, 1, 35–53.

    Article  CAS  Google Scholar 

  3. Zhou, Z. L.; Li, N.; Yang, Y. Z.; Chen, H. S.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater.2018, 8, 1801439.

    Article  Google Scholar 

  4. Placke, T.; Heckmann, A.; Schmuch, R.; Meister, P.; Beltrop, K.; Winter, M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule2018, 2, 2528–2550.

    Article  CAS  Google Scholar 

  5. Gao, J. C.; Tian, S. F.; Qi, L.; Wang, H. Y. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta2015, 176, 22–27.

    Article  CAS  Google Scholar 

  6. Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun.2018, 9, 4469.

    Article  Google Scholar 

  7. Qi, X.; Blizanac, B.; DuPasquier, A.; Meister, P.; Placke, T.; Oljaca, M.; Li, J.; Winter, M. Investigation of PF6 and TFSI anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys. Chem. Chem. Phys.2014, 16, 25306–25313.

    Article  CAS  Google Scholar 

  8. Wang, S.; Jiao, S. Q.; Tian, D. H.; Chen, H. S.; Jiao, H. D.; Tu, J. G.; Liu, Y. J.; Fang, D. N. A novel ultrafast rechargeable multi-ions battery. Adv. Mater.2017, 29, 1606349.

    Article  Google Scholar 

  9. Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon2016, 109, 276–281.

    Article  CAS  Google Scholar 

  10. Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun.2015, 51, 11892–11895.

    Article  CAS  Google Scholar 

  11. Yu, Z. J.; Jiao, S. Q.; Li, S. J.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater.2019, 29, 1806799.

    Article  Google Scholar 

  12. Zhang, X. F.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Xiao, X.; Li, S. J.; Wang, M. Y.; Lei, H. P.; Tian, D. H.; Chen, H. S. et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci.2019, 12, 1918–1927.

    Article  CAS  Google Scholar 

  13. Placke, T.; Schmuelling, G.; Kloepsch, R.; Meister, P.; Fromm, O.; Hilbig, P.; Meyer, H. W.; Winter, M. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z. Anorg. Allg. Chem.2014, 640, 1996–2006.

    Article  CAS  Google Scholar 

  14. Schmuelling, G.; Placke, T.; Kloepsch, R.; Fromm, O.; Meyer, H. W.; Passerini, S.; Winter, M. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources2013, 239, 563–571.

    Article  CAS  Google Scholar 

  15. Gao, J. C.; Yoshio, M.; Qi, L.; Wang, H. Y. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources2015, 278, 452–457.

    Article  CAS  Google Scholar 

  16. Li, N.; Xin, Y. D.; Chen, H. S.; Jiao, S. Q.; Jiang, H. Q.; Song, W. L.; Fang, D. N. Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem.2019, 29, 122–128.

    Article  Google Scholar 

  17. Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett.2014, 14, 1405–1412.

    Article  CAS  Google Scholar 

  18. Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol.2019, 14, 50–56.

    Article  CAS  Google Scholar 

  19. Lacey, S. D.; Wan, J. Y.; von Wald Cresce, A.; Russell, S. M.; Dai, J. Q.; Bao, W. Z.; Xu, K.; Hu, L. B. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett.2015, 15, 1018–1024.

    Article  CAS  Google Scholar 

  20. Liu, C.; Ye, S. In situ Atomic Force Microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. J. Phys. Chem. C2016, 120, 25246–25255.

    Article  CAS  Google Scholar 

  21. Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces2015, 7, 9573–9580.

    Article  CAS  Google Scholar 

  22. Alliata, D.; Häring, P.; Haas, O.; Kötz, R.; Siegenthaler, H. Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem. Commun.1999, 1, 5–9.

    Article  CAS  Google Scholar 

  23. Alliata, D.; Kötz, R.; Haas, O.; Siegenthaler, H. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte. Langmuir1999, 15, 8483–8489.

    Article  CAS  Google Scholar 

  24. Goss, C. A.; Brumfield, J. C.; Irene, E. A.; Murray, R. W. Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem.1993, 65, 1378–1389.

    Article  CAS  Google Scholar 

  25. Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. J. Power Sources1998, 72, 53–65.

    Article  CAS  Google Scholar 

  26. Ishihara, T.; Yokoyama, Y.; Kozono, F.; Hayashi, H. Intercalation of PF6 anion into graphitic carbon with nano pore for dual carbon cell with high capacity. J. Power Sources2011, 196, 6956–6959.

    Article  CAS  Google Scholar 

  27. Seel, J. A.; Dahn, J. R. Electrochemical intercalation of PF6 into graphite. J. Electrochem. Soc.2000, 147, 892–898.

    Article  CAS  Google Scholar 

  28. Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S. In-depth interfacial chemistry and reactivity focused investigation of lithium-imide-and lithium-imidazole-based electrolytes. ACS Appl. Mater. Interfaces2016, 8, 16087–16100.

    Article  CAS  Google Scholar 

  29. Märkle, W.; Tran, N.; Goers, D.; Spahr, M. E.; Novák, P. The influence of electrolyte and graphite type on the PF6 intercalation behaviour at high potentials. Carbon2009, 47, 2727–2732.

    Article  Google Scholar 

  30. Choo, H. S.; Kinumoto, T.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc.2007, 154, B1017–B1023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Soft Science Research Project of Guangdong Province (No. 2017B030301013) and the Shenzhen Science and Technology Research (Nos. JCYJ20170818085823773 and ZDSYS201707281026184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyi Yang or Feng Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Jia, L., Liu, X. et al. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Res. 13, 412–418 (2020). https://doi.org/10.1007/s12274-020-2623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2623-1

Keywords

Navigation