Skip to main content
Log in

PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure.

Abstract

A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to β-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source for the library. “Roots” represent a combination of many developmental stages, suspension cultures, and treatments including inoculation with a variety of symbionts, nematodes, and starvation for nitrogen or phosphate

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00111

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison LA, Kiss GB, Bauer P, Poiret M, Pierre M, Savouré A, Kondorosi E, Kondorosi A (1993) Identification of two alfalfa early nodulin genes with homology to members of the pea Enod12 gene family. Plant Mol Biol 21:375–380

    CAS  PubMed  Google Scholar 

  • Averyhart-Fullard V, Datta K, Marcus A (1988) A hydroxyproline-rich protein in the soybean cell wall. Proc Natl Acad Sci USA 85:1082–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker D, Pfaff T, Moreau D, Groves E, Ruffel S, Lepetit M, Whitehand S, Maillet F, Nair R, Journet E-P (2006) Growing M. truncatula: choice of substrates and growth conditions. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, Ardmore

    Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker D (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant–Microbe Interact 14:695–700

    CAS  PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    CAS  PubMed  Google Scholar 

  • Casero PJ, Casimiro I, Knox JP (1998) Occurrence of cell surface arabinogalactan-protein and extension epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204:252–259

    CAS  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Ann Rev Plant Physiol Plant Mol Biol 49:281–309

    CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dash S, Campbell J, Cannon E, Cleary A, Huang W, Kalberer S, Karingula V, Rice A, Singh J, Umale P, Weeks N, Wilkey A, Farmer A, Cannon S (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:D1181–D1188

    CAS  PubMed  Google Scholar 

  • Datta K, Marcus A (1990) Nucleotide sequence of a gene encoding soybean repetitive proline-rich protein 3. Plant Mol Biol 14:285–286

    CAS  PubMed  Google Scholar 

  • Datta K, Schmidt A, Marcus A (1989) Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes. Plant Cell 1:945–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E (2017) Proline hydroxylation in cell wall proteins: Is it yet possible to define rules? Front Plant Sci 8:1802

    PubMed  PubMed Central  Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, New York

    Google Scholar 

  • Esau K (1977) Anatomy of the seed plants. Wiley, New York

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Fowler TJ, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121:1081–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franssen HJ, Nap J-P, Gloudemans T, Stiekema W, Van Dam H, Govers F, Louwerse J, Van Kammen A, Bisseling T (1987) Characterization of cDNA for nodulin-75 of soybean: a gene product involved in early stages of root nodule development. Proc Natl Acad Sci USA 84:4495–4499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franssen HJ, Vijn I, Yang WC, Bisseling T (1992) Developmental aspects of the rhizobium-legume symbiosis. Plant Mol Biol 19:89–107

    CAS  PubMed  Google Scholar 

  • Fry SC (1982) Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J 204:449–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamas P, Debellé F, Berges H, Godiard L, Niebel A, Journet E, Gouzy J (2006) Medicago truncatula cDNA and genomic libraries. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, Ardmore

    Google Scholar 

  • Garcia J, Barker D, Journet E-P (2006) Seed storage and germination. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, Ardmore

    Google Scholar 

  • Hale I, Matsumoto B (1993) Resolution of subcellular detail in thick tissue sections: immunohistochemical preparation and fluorescence confocal microscopy. Methods Cell Biol 38:289–324

    CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1989) Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell 1:937–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1990) Characterization of a proline-rich cell wall protein gene family of soybean. J Biol Chem 265:2470–2475

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Journet E-P, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: A Novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant–Microbe Interact 14:737–748

    CAS  PubMed  Google Scholar 

  • Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ, Chitikineni A, Kim MY, Ko JM, Gwag JG, Moon JK, Lee YH, Park BS, Varshney RK, Lee SH (2015) Draft genome sequence of adzuki bean Vigna angularis. Sci Rep 5:8069

    PubMed  PubMed Central  Google Scholar 

  • Keller B (1993) Structural cell wall proteins. Plant Physiol 101:1127–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieliszewski MJ, Lamport DTA (1994) Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172

    CAS  PubMed  Google Scholar 

  • Kleis-San Francisco SM, Tierney ML (1990) Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol 94:1897–1902

    CAS  Google Scholar 

  • Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Taran B, Bendahmane A, Aury J-M, Batley J, Le Paslier M-C, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422

    CAS  PubMed  Google Scholar 

  • Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucl Acids Res 40:D1221–D1229

    CAS  PubMed  Google Scholar 

  • Li S, Zhang Y, Ding C, Gao X, Wang R, Mo W, Lv F, Wang S, Liu L, Tang Z, Tian H, Zhang J, Zhang B, Huang Q, Lu M, Wuyun T-n, Hu Z, Xia Y, Su X (2019) Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. J Plant Physiol 233:58–72

    CAS  PubMed  Google Scholar 

  • Lindstrom JT, Vodkin LO (1991) A soybean cell wall protein is affected by seed color genotype. Plant Cell 3:561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Löbler M, Hirsch AM (1993) A gene that encodes a proline-rich nodulin with limited homology to PsENOD12 is expressed in the invasion zone of Rhizobium meliloti-induced alfalfa root nodules. Plant Physiol 103:21–30

    PubMed  PubMed Central  Google Scholar 

  • Marcus A, Greenberg J, Averyhart-Fullard V (1991) Repetitive proline-rich proteins in the extracellular matrix of the plant cell. Physiol Plant 81:273–279

    CAS  Google Scholar 

  • Matsushima N, Creutz CE, Kretsinger RH (1990) Polyproline, β-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins Struct Funct Bioinform 7:125–155

    CAS  Google Scholar 

  • Millar DJ, Slabas AR, Sidebottom C, Smith CG, Allen AK, Bolwell GP (1992) A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.). Planta 187:176–184

    CAS  PubMed  Google Scholar 

  • Moore PJ, Staehelin LA (1988) Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication for secretory pathways. Planta 174:433–445

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100

    CAS  PubMed  Google Scholar 

  • Nam Y-W, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646

    CAS  Google Scholar 

  • Newman AM, Cooper JB (2007) XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinform 8:382

    Google Scholar 

  • Newman AM, Cooper JB (2011) Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes. PLoS ONE 6:e23167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otte O, Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200:238–246

    CAS  Google Scholar 

  • Otte O, Barz W (2000) Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochem 53:1–5

    CAS  Google Scholar 

  • Perlick AM, Pühler A (1993) A survey of transcripts expressed specifically in root nodules of broadbean (Vicia faba L.). Plant Mol Biol 22:957–970

    CAS  PubMed  Google Scholar 

  • Pichon M, Journet EP, Dedieu A, de Billy F, Truchet G, Barker DG (1992) Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4:1199–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proft T, Hilbert H, Layh-Schmitt G, Herrmann R (1995) The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol 177:3370–3378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2014) Transient expressions of synthetic biology in plants. Curr Opin Plant Biol 19:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters A-M, Gloudemans T, Van Kammen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60:281–294

    CAS  PubMed  Google Scholar 

  • Schultz C, Harrison M (2008) Novel plant and fungal AGP-like proteins in the Medicago truncatula–Glomus intraradices arbuscular mycorrhizal symbiosis. Mycorrhiza 18:403–412

    CAS  PubMed  Google Scholar 

  • Sherrier DJ, VandenBosch KA (1994) Localization of repetitive proline-rich proteins in the extracellular matrix of pea root nodules. Protoplasma 183:148–161

    CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Fowler T, Tierney M (1993a) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119

    CAS  PubMed  Google Scholar 

  • Suzuki H, Wagner T, Tierney ML (1993b) Differential expression of two soybean (Glycine max L.) proline-rich protein genes after wounding. Plant Physiol 101:1283–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swords K, Staehelin LA (1993) Complementary immunolocalization patterns of cell wall hydroxyproline-rich glycoproteins studied with the use of antibodies directed against different carbohydrate epitopes. Plant Physiol 102:891–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275

    CAS  PubMed Central  Google Scholar 

  • Verdonk JC, Hatfield RD, Sullivan ML (2012) Proteomic analysis of cell walls of two developmental stages of alfalfa stems. Front Plant Sci. https://doi.org/10.3389/fpls.2012.00279

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856

    CAS  PubMed  Google Scholar 

  • Watson BS, Lei Z, Dixon RA, Sumner LW (2004) Proteomics of Medicago sativa cell walls. Phytochemistry 65:1709–1720

    CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    CAS  PubMed  Google Scholar 

  • White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409

    CAS  PubMed  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    CAS  PubMed  Google Scholar 

  • Wilson RC, Cooper JB (1994) Characterization of PRP1 and PRP2 from Medicago truncatula. Plant Physiol 105:445–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Long F, Maruoka EM, Cooper JB (1994) A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell 6:1265–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, pp 43–54

    Google Scholar 

  • Wisniewski J-P, Rathbun EA, Knox JP, Brewin NJ (2000) Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol Plant–Microbe Interact 13:413–420

    CAS  PubMed  Google Scholar 

  • Wyatt RE, Nagao RT, Key JL (1992) Patterns of soybean proline-rich protein gene expression. Plant Cell 4:99–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z-H, Song Y-R, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    CAS  PubMed  Google Scholar 

  • Ziemer MA, Mason A, Carlson DM (1982) Cell-free translations of proline-rich protein mRNAs. J Biol Chem 257:11176–11180

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by the Department of Energy Biosciences program (DE-FG03-95ER20192) to JBC, and by a UC Biotechnology Training Grant. We gratefully thank Dr. Mary Tierney (University of Vermont) for a gift of anti-soybean PRP2 antibodies, Dr. Monte Radeke for help with peptide synthesis and advice on producing anti-peptide antibodies, Dr. Brian Matsumoto and Dr. Mary Raven for advice and training on the confocal microscope and for use of a vibratome, and Laura Polacco, Lucas Hanscom, Scott Spivack, Kim O'Keefe, Julia Dubiel, Mario Guzman, and Emily Garcia for general laboratory assistance.

Author information

Authors and Affiliations

Authors

Contributions

JBC conceived and obtained funding for the project. JBC and RRF conceived and supervised experiments. BJE, NCS, NH, CW and MAS conceived and performed experiments. All authors contributed to writing or providing feedback on the manuscript.

Corresponding author

Correspondence to Ruth R. Finkelstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 55 kb)

Supplementary file2 (PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, B.J., Staples, N.C., Hess, N. et al. PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots. Plant Mol Biol 102, 571–588 (2020). https://doi.org/10.1007/s11103-019-00960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00960-5

Keywords

Navigation