Skip to main content
Log in

Development and Validation of a New Model for In Situ Foam Generation Using Foamer Droplets Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Foam generation and transport in porous media are a proven method to improve the sweep efficiency of a flooding fluid in enhanced oil recovery process and increase the effectiveness of a treatment fluid in well intervention procedures. Foam in the porous media is often generated using surfactant alternating gas or co-injection. Although these operations result in good incremental production, the profit losses could be high due to surfactant retention and lack of water injection facilities in the target fields. One way of reducing foam generation operations expenses is by injecting the surfactant solution disperse throughout the gas phase in a process called “disperse foam.” Core-flooding experimental results have shown that disperse foam techniques reduce the surfactant retention and increase cumulative oil production. This increase means that not only the foam is being generated but also it is blocking the high mobility channels and enhancing the sweep efficiency. Additionally, the operational implementation in field operations is very simple and reduces significantly operational costs of the process. Because few laboratory core-flooding tests and field pilots have been executed using the disperse foam technique, there is a high level of uncertainty associated with the method. Besides, the models reported in the literature do not account for all the associated phenomena, including the surfactant droplets transfer between the gas and liquid phases, and the lamellae stability at low water saturation. For this reason, the development of a mechanistic disperse foam model is key to understand the phenomena associated with “disperse foam” operations. In this work, we use a previous foam mechanistic model to develop a disperse foam model that includes the physicochemical mechanisms of the foaming process a core scale. The model accounts for the foamer mass transference between the gas and liquid phases in a non-equilibrium state with a particle interception model, also accounts for the reversible and irreversible surfactant adsorption on the rock surface in dynamic conditions with a first-order kinetic model, and includes foam generation, coalescence and, transport using a population balance mechanistic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a, b, c :

Velocity exponents in Eqs. (14)–(18)

b :

Inverse of the formation volume factor (Shrinkage)

C s :

Foamer concentration

C sg :

Foamer droplets dispersion ratio

J :

Diffusion flux

K :

Kinetic mass transfer term

K − 1, K1 :

Generation and coalescence parameters

:

Mass transfer

N :

Adsorbed mass fraction

n :

Foam texture, bubble density

Pc :

Capillary pressure

Pct :

Threshold capillary pressure

q :

Flow

rg, rc :

Generation and coalescence foams kinetics

Rs, Rv :

Dissolved gas in the oleic phase, volatilized gas–oil ratio

S :

Phase saturation

t :

Time

u :

Darcy velocity

v :

Interstitial velocity

X :

Component concentration, Foam quality

α :

Foam model parameters

β :

Foam model parameters

ρ :

Phase density

ϕ :

Porosity

0:

Reference condition

f:

Flowing foam

g:

Gas phase

j:

Flow direction

o:

Oil

p:

Phase

r:

Rock

s:

Surfactant (foamer)

Sc:

Standard conditions

T:

Trapped foam

W:

Water phase

:

Pc ∞

0:

Reference

* :

Limit value

ads:

Adsorption

des:

Desorption

int:

Interception

dis:

Dissolution

Eq:

Equilibria

f:

Foam

Np:

Phase number

References

  • Apaydin, O.G., Kovscek, A.R.: Surfactant concentration and end effects on foam flow in porous media. Transp. Porous Media 43, 511–536 (2001). https://doi.org/10.1023/A:1010740811277

    Article  Google Scholar 

  • Blaker, T., Celius, H.K., Lie, T., Martinsen, H.A., Rasmussen, L., Vassenden, F.: Foam for gas mobility control in the Snorre field: the FAWAG project. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1999)

  • Ertekin, T., Abou-Kassem, J.H., King, G.R.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers, Richardson (2001)

    Google Scholar 

  • Falls, A.H., Hirasaki, G.J., Patzek, T.W., Gauglitz, D.A., Miller, D.D., Ratulowski, T.: Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Reserv. Eng. (1988). https://doi.org/10.2118/14961-PA

    Article  Google Scholar 

  • Farajzadeh, Rouhollah, Wassing, B.M., Boerrigter, Paulus Maria: Foam assisted gas–oil gravity drainage in naturally-fractured reservoirs. J. Pet. Sci. Eng. 94, 112–122 (2012)

    Article  Google Scholar 

  • Hirasaki, G.J.: The steam foam process. Society of Petroleum Engineers no. SPE 19518 (1989)

  • Jamshidnezhad, M., Shen, C., Kool, P.H., Rossen, W.R.: Improving injectivity to fight gravity segregation in gas enhanced oil recovery. SPE J. 15(01), 91–104 (2010)

    Article  Google Scholar 

  • Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A 318, 62–77 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.017

    Article  Google Scholar 

  • Khaled, A.: A prediction of water content in sour natural gas. King Saud University, Riyadh (2007)

    Google Scholar 

  • Kovscek, A.R., Bertin, H.J.: Foam mobility in heterogeneous porous media. Transp. Porous Media 52(1), 37–49 (2003). https://doi.org/10.1023/A:1022368228594

    Article  Google Scholar 

  • Kovscek, A.R., Radke, C.J.: Fundamentals of foam transport in porous media. In: DOE, vol. 508, Berkeley, CA (1993)

  • Kovscek, A.R., Radke, C.J.: Fundamentals of foam transport in porous media. In: Schramm, L. (ed.) Foams: Fundamentals and Applications in the Petroleum Industry, pp. 115–163. American Chemical Society, Washington (1994). https://doi.org/10.1021/ba-1994-0242.ch003

    Chapter  Google Scholar 

  • Kovscek, A.R., Patzek, T.W., Radke, C.J.: A mechanistic population balance model for transient and steady-state foam flow in boise sandstone. Chem. Eng. Sci. 50, 3783–3799 (1995). https://doi.org/10.1016/0009-2509(95)00199-F

    Article  Google Scholar 

  • Li, R.F., Hirasaki, G., Miller, C.A., Masalmeh, S.K.: Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack. SPE J. 17(04), 1–207 (2012)

    Google Scholar 

  • Luo, H., Ma, K., Mateen, K., Ren, G., Bourdarot, G., Morel, D., Romero, C.: Modeling polymer enhanced foam flow in porous media using an improved population-balance foam model. In: SPE Improved Oil Recovery Conference. Society of Petroleum Engineers (2018)

  • Ma, K., Ren, G., Mateen, K., Morel, D., Cordelier, P.: Literature review of modeling techniques for foam flow through porous media. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2014)

  • Ma, K., Mateen, K., Ren, G., Bourdarot, G., Morel, D.: Modeling foam flow at achievable flow rates in the subterranean formation using the population-balance approach and implications for experimental design. J. Nonnewton Fluid Mech. 254, 36–50 (2018)

    Article  Google Scholar 

  • Ocampo, A.: Efecto de La Concentración Del Químico Disperso En La Formación de Espumas En Medios Porosos. Universidad Nacional de Colombia (2016)

  • Ocampo, A., Restrepo, A., Lopera, S.H., Mejía, J.M.: Creation of insitu EOR foams by the injection of surfactant in gas dispersions - lab confirmation and field application. SPE-190219-MS. (2018). https://doi.org/10.2118/190219-MS

  • Patil, P.D., Knight, T., Katiyar, A., Vanderwal, P., Scherlin, J., Rozowski, P., Ibrahim, M., Sridhar, G.B., Nguyen, Q.P.: CO2 foam field pilot test in sandstone reservoir: complete analysis of foam pilot response. In: SPE Improved Oil Recovery Conference. Society of Petroleum Engineers (2018)

  • Patzek, T.W.: Description of foam flow in porous media by the population balance method. SPE J. (1985). https://doi.org/10.1021/bk-1988-0373.ch016

    Article  Google Scholar 

  • Patzek, T.W.: Description of foam flow in porous media by the population balance method. In: Smith, D.H. (ed.) Surfactant Based Mobility Control, Progress in Miscible Flood Enhanced Oil Recovery, pp. 326–341. American Chemical Society, Houston (1988)

    Chapter  Google Scholar 

  • Rossen, W.R., Wang, M.W.: Modeling foams for acid diversion. SPE J. (1999). https://doi.org/10.2118/56396-PA

    Article  Google Scholar 

  • Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, London (2003)

    Book  Google Scholar 

  • Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite, vol. Method. Pearson Education, London (2007)

    Google Scholar 

  • Walmsley, J.L., Schemenauer, R.S., Bridgman, H.A.: A method for estimating the hydrologic input from fog in mountainous terrain. J. Appl. Meteorol. 35(12), 2237–2249 (1996)

    Article  Google Scholar 

  • Zeng, Y., Ma, K., Farajzadeh, R., Puerto, M., Biswal, S.L., Hirasaki, G.J.: Effect of surfactant partitioning between gaseous phase and aqueous phase on CO2 foam transport for enhanced oil recovery. Transp. Porous Media 114(3), 777–793 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Equion, COLCIENCIAS and the Agencia Nacional de Hidorcarburos for financial support under Contract No. 273-2017. Authors also thank the Universidad Nacional de Colombia for logistic and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Valencia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia, J.D., Ocampo, A. & Mejía, J.M. Development and Validation of a New Model for In Situ Foam Generation Using Foamer Droplets Injection. Transp Porous Med 131, 251–268 (2020). https://doi.org/10.1007/s11242-018-1156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1156-5

Keywords

Navigation