Skip to main content
Log in

Surfactant Foam Selection for Enhanced Light Non-Aqueous Phase Liquids (LNAPL) Recovery in Contaminated Aquifers

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Foam is promising for the remediation of non-aqueous phase liquids (NAPL) source zones; however, the production of foam and its behavior in porous media are poorly understood. A methodology for the selection of surfactants suitable for foam production applied to NAPL remediation was developed. Two criteria were initially used for surfactant selection: foamability as evaluated by the Ross–Miles test and interfacial tension reduction measured with the pendant drop method. Three promising surfactants were identified and used in sand column tests: Genapol LRO because it produced the highest foam height in the Ross–Miles test, Ammonyx Lo which exhibited the lowest interfacial tension with p-xylene and had the second highest foam height, and Tomadol 900 because it showed intermediate results in both tests. Viscosity was found to be proportional to foamability. Genapol LRO produced a foam so viscous that it destabilized by the end of the experiment. Ammonyx Lo produced a less viscous foam but with a stable front. Tomadol 900 produced an unstable foam with poor viscosity. Results from column tests gave indications of optimal conditions needed to produce a stable and viscous foam front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  • Chauveteau, G., Zaitoun, A.: Basic rheological behavior of xanthan polysaccharide solutions in porous media: effects of pore size and polymer concentration. In: Foyers, F.J. (ed.) First European Symposium on Enhanced Oil Recovery, Bournemouth, England, pp. 197–214. Elsevier, Amsterdam (1981)

    Google Scholar 

  • Chowdiah, P., Misra, B.R., Kilbane, J.J., Srivastava, V.J., Hayes, T.D.: Foam propagation through soils for enhanced in situ remediation. J. Hazard. Mater. 62, 265–280 (1998)

    Article  Google Scholar 

  • Couto, H.J.B., Massarani, G., Biscaia, E.C., Sant’Anna, G.L.: Remediation of sandy soils using surfactant solutions and foams. J. Hazard. Mater. 164, 1325–1334 (2009)

    Article  Google Scholar 

  • de Marsily, G.: Quantitative Hydrogeology—Groundwater Hydrology for Engineers. Academic Press, San Diego (1986)

    Google Scholar 

  • Del Campo Estrada, E., Bertin, H., Atteia, O.: Experimental study of foam flow in sand columns: surfactant choice and resistance factor measurement. Transp. Porous Med. 108, 335–354 (2015)

    Article  Google Scholar 

  • Falls, A.H., Musters, J.J., Ratulowski, J.: The apparent viscosity of foams in homogeneous bead packs. SPE Reserv. Eng. 4, 155–164 (1989)

    Article  Google Scholar 

  • Farajzadeh, R., Andrianov, A., Hirasaki, G.J., Krastev, R., Rossen, W.R.: Foam–oil interaction in porous media: implications for foam assisted enhanced oil recovery. Adv. Colloid Interface Sci. 183, 1–13 (2012)

    Article  Google Scholar 

  • Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57, 4037–4052 (2002)

    Article  Google Scholar 

  • Hirasaki, G.J.: The steam-foam process. J. Pet. Technol. 41(5), 449–456 (1989)

    Article  Google Scholar 

  • Hirasaki, G.J., Jackson, R.E., Jin, M., Lawson, J.B., Londergan, J., Meinardus, H., Miller, C.A., et al.: Field demonstration of the surfactant foam process for remediation of a heterogeneous aquifer contaminated with DNAPL. In: Fiorenza, S., Miller, C.A., Oubre, C.L., Ward, C.H. (eds.) NAPL Removal: Surfactants, Foams, and Microemulsions, Part 1. AATDF Monograph Series, pp. 3–163. Lewis Publishers, CRC Press, Boca Raton (2000)

    Google Scholar 

  • Hirasaki, G.J., Lawson, J.B.: Mechanism of foam flow in porous media: apparent viscosity in smooth capillaries. SPEJ 25(2), 176–190 (1985)

    Article  Google Scholar 

  • Jeong, S.W., Corapcioglu, M.Y., Roosevelt, S.E.: Micromodel study of surfactant foam remediation of residual trichloroethylene. Environ. Sci. Technol. 34, 3456–3461 (2000)

    Article  Google Scholar 

  • Jeong, S.W., Corapcioglu, M.Y.: A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding. J. Contam. Hydrol. 60, 77–96 (2003)

    Article  Google Scholar 

  • Jeong, S.W., Corapcioglu, M.Y.: Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. J. Hazard. Mater. A126, 8–13 (2005)

    Article  Google Scholar 

  • Johnson, P.C., Stanley, C.C., Kemblowski, M.W., Byers, D.L., Colthart, J.D.: A practical approach to the design, operation, and monitoring of in situ soil-venting systems. Groundw. Monit. Remed. 10(2), 158–178 (1990)

    Google Scholar 

  • Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Lee, H., Heller, J., Hoefer, A., et al.: Change in apparent viscosity of CO2 foam with rock permeability. SPE Reserv. Eng. 6, 421–428 (1991)

    Article  Google Scholar 

  • Lee, H.O., Heller, J.P., et al.: Laboratory measurements of CO2-foam mobility. SPE Reserv. Eng. 5, 193–197 (1990)

    Article  Google Scholar 

  • Li, R.F.: Study of foam mobility control in surfactant enhanced oil recovery processes in 1-D, heterogeneous 2-D, and micro model systems. PhD Thesis, Rice University, Houston, TX (2011)

  • Li, R.F., Hirasaki, G.J., Miller, C.A., Masalmeh, S.K.: Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack. SPEJ 17(4), 1207–1220 (2012a)

    Article  Google Scholar 

  • Li, X., Kaeakshev, S.I., Evans, G.M., Stevenson, P.: Effect of environmental humidity on static foam stability. Langmuir 28, 4060–4068 (2012b)

    Article  Google Scholar 

  • Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., Lauzon, J.-M.: 2D Sandbox evaluation of foams for mobility control and enhanced LNAPL recovery in layered soils. J. Contam. Hydrol. 193, 63–73 (2016)

    Article  Google Scholar 

  • Lucy, C.A., Tsang, J.S.: Determination of surfactant concentration using micellar enhanced fluorescence and flow injection titration. Talanta 50(6), 1283–1289 (2000)

    Article  Google Scholar 

  • Maire, J., Fatin-Rouge, N.: Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. J. Hazard. Mater. 321, 247–255 (2017)

    Article  Google Scholar 

  • Mannhardt, K., Novosad, J., Schramm, L., et al.: Comparative evaluation of foam stability to oil. SPE Reserv. Eval. Eng. 3, 23–34 (2000)

    Article  Google Scholar 

  • Martel, R., Gélinas, P.J.: Surfactant solutions developed for NAPL recovery in contaminated aquifers. Groundwater 34, 143–154 (1996)

    Article  Google Scholar 

  • Martel, R., Hébert, A., Lefebvre, R., Gélinas, P., Gabriel, U.: Displacement and sweep efficiencies observed in a DNAPL recovery test in a contaminated aquifer with washing and polymer solutions injected in a 5-spot pattern. J. Contam. Hydrol. 75, 1–29 (2004)

    Article  Google Scholar 

  • Martel, K.E., Martel, R., Gélinas, P.J., Lefebvre, R.: Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery. Groundw. Monit. Remed. Summer 18(3), 103–113 (1998)

    Article  Google Scholar 

  • Mercer, J.W., Cohen, R.M.: A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6, 107–163 (1990)

    Article  Google Scholar 

  • Mouton, J., Mercier, G., Blais, J.F.: Amphoteric surfactants for PAH and lead polluted-soil treatment using flotation. Water Air Soil Pollut. 197, 381–393 (2009)

    Article  Google Scholar 

  • Mulligan, C.N., Eftekhari, F.: Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 70, 269–279 (2003)

    Article  Google Scholar 

  • Nguyen, Q.P., Currie, P.K., Buijse, M., Zitha, P.L.J.: Mapping of foam mobility in porous media. J. Petrol. Sci. Eng. 58, 119–132 (2007)

    Article  Google Scholar 

  • Pennell, K.D., Pope, G.A., Abriola, L.W.: Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flooding. Environ. Sci. Technol. 30(4), 1328–1335 (1996)

    Article  Google Scholar 

  • Portois, C.: Comportement de la mousse en milieu poreux pour confiner une source de pollution: potentialités, contraintes et demonstration en site reel. PhD thesis, Université Bordeaux Montaigne (2018)

  • Ransohoff, T., Radke, C.: Mechanisms of foam generation in glass-bead packs. SPE Reserv. Eng. 3, 573–585 (1988)

    Article  Google Scholar 

  • Ripple, C.D., James, R.V., Rubin, J.: Radial particle-size segregation during packing of particle into cylindrical containers. Power Technol. 8, 165–175 (1973)

    Article  Google Scholar 

  • Robert, T., Martel, R., Conrad, S.H., Lefebvre, R., Gabriel, U.: Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model. J. Contam. Hydrol. 86, 3–31 (2006)

    Article  Google Scholar 

  • Rossen, W.R., Gauglitz, P.A.: Percolation theory of creation and mobilization of foams in porous media. Am. Inst. Chem. Eng. J. 36(8), 1176–1188 (1990)

    Article  Google Scholar 

  • Rothmel, R.K., Peters, R.W., St. Martin, E., Deflaun, M.F.: Surfactant foam biodegradation of in situ treatment of TCE DNAPLs. Environ. Sci. Technol. 32, 1667–1675 (1998)

    Article  Google Scholar 

  • Shallcross, D.C., Castanier, L.M., Brigham, W.E.: Characterization of Steam Foam Surfactants Through One-Dimensional Sandpack Experiments. Stanford University Petroleum Research Institute, Stanford (1990)

    Book  Google Scholar 

  • Simjoo, M., Nguyen, Q.P., Zitha, P.L.J.: Rheological transition during foam flow in porous media. Ind. Eng. Chem. Res. 51, 10225–10231 (2012)

    Article  Google Scholar 

  • Tanzil, D., Hirasaki, G.J., Miller, C.A.: Conditions for Foam Generation In Homogeneous Porous Media. SPE 75176 (2002)

  • Woodward, R.P.: Surface Tension Measurements Using the Drop Shape Method. First Ten Angstroms (2000)

Download references

Acknowledgements

Funding for this study was provided by a NSERC-CRD Grant (412730-11) in partnership with TechnoRem and a NSERC Discovery Grant (326975-2011) held by Richard Martel. The authors would like to gratefully acknowledge the donation of surfactant samples by Stepan, the help of Mr. Luc Trépanier from INRS in designing and installing the foam injection system, of Mr. Marco Boutin from INRS for figures and tables improvements, and of Dr. Clément Portois for internal review. We acknowledge reviewers (M. Babs Oyeneyin from Robert Gordon University and anonymous) for comments and suggested corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Martel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longpré-Girard, M., Martel, R., Robert, T. et al. Surfactant Foam Selection for Enhanced Light Non-Aqueous Phase Liquids (LNAPL) Recovery in Contaminated Aquifers. Transp Porous Med 131, 65–84 (2020). https://doi.org/10.1007/s11242-019-01292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01292-0

Keywords

Navigation