Skip to main content
Log in

Belief-peaks clustering based on fuzzy label propagation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

For unsupervised learning, we propose a new clustering method which incorporates belief peaks into a linear label propagation strategy. The proposed method aims to reveal the data structure by finding out the exact number of clusters and deriving a fuzzy partition. Firstly, the cluster centers and outliers can be identified by the improved belief metric, which makes use of the whole data distribution information so as to correctly highlight the cluster centers without the limitation of massive neighbor points. Secondly, an informative initial fuzzy cluster assignment for each remaining point is created by considering the distances between its neighbors and each cluster center, then the fuzzy label of each point will be iteratively updated by absorbing its neighbors’ label information until the fuzzy partition is stable. The label propagation assignment strategy provides a valuable alternative technique with explicit convergence and linear complexity in the field of belief-peaks clustering. The effectiveness of the proposed method is tested on seven commonly used real-world datasets from the UCI Machine Learning Repository, and seven synthetic datasets in the domain of data clustering. Comparing with several state-of-the-art clustering methods, the experiments reveal that the proposed method enhanced the clustering results in terms of the exact numbers of clusters and the Adjusted Rand Index. Further, the parameter analysis experiments validate the robustness to the two tunable parameters in the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://cs.joensuu.fi/sipu/datasets

References

  1. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomputing 73(11):4773–4795

    Article  Google Scholar 

  2. Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071

    Article  Google Scholar 

  3. Bache K, Lichman M (2013) Uci machine learning repository (http://archive.ics.uci.edu/ml). School of Information and Computer Science, University of California Irvine, CA, USA

  4. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  5. Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. 2006. Cambridge, Massachusettes: The MIT Press View Article

  6. Dempster AP (2008) Upper and lower probabilities induced by a multivalued mapping. In: Classic Works of the Dempster-Shafer Theory of Belief Functions. Springer, 57–72

  7. Deng X, Xiao F, Deng Y (2017) An improved distance-based total uncertainty measure in belief function theory. Appl Intell 46(4):898–915

    Article  Google Scholar 

  8. Denoeux T, Kanjanatarakul O (2016) Evidential clustering: a review. In: Integrated Uncertainty in Knowledge Modelling and Decision Making - 5th International Symposium, IUKM 2016, Da Nang, Vietnam, November 30 - December 2, 2016, Proceedings, pp 24–35

  9. Denœux T, Masson MH (2004) Evclus: evidential clustering of proximity data. IEEE Trans Syst, Man, Cybern Part B (Cybernetics) 34(1):95–109

    Article  Google Scholar 

  10. Denoeux T, Kanjanatarakul O, Sriboonchitta S (2015) Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule. Knowl-Based Syst 88:57–69

    Article  Google Scholar 

  11. Denoeux T, Sriboonchitta S, Kanjanatarakul O (2016) Evidential clustering of large dissimilarity data. Knowl-Based Syst 106:179–195

    Article  Google Scholar 

  12. Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl-Based Syst 99:135–145

    Article  Google Scholar 

  13. Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231

  14. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU press, Baltimore

    Google Scholar 

  15. Han D, Dezert J, Yang Y (2018) Belief interval-based distance measures in the theory of belief functions. IEEE Trans Syst, Man, Cybern:, Syst 48(6):833–850

    Article  Google Scholar 

  16. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  17. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  18. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Computing Surveys (CSUR) 31 (3):264–323

    Article  Google Scholar 

  19. Jiang W, Zhan J (2017) A modified combination rule in generalized evidence theory. Appl Intell 46 (3):630–640

    Article  MathSciNet  Google Scholar 

  20. Jiroušek R, Shenoy PP (2018) A new definition of entropy of belief functions in the dempster–shafer theory. Int J Approx Reason 92:49–65

    Article  MathSciNet  Google Scholar 

  21. Li X, Zhang D, Liu Z, Li Z, Du C (2015) Materials science: share corrosion data. Nature 527 (7579):441–442

    Article  Google Scholar 

  22. Liu D, Bai HY, Li HJ, Wang WJ (2014) Semi-supervised community detection using label propagation. Int J Modern Phys B 28(29):1450208

    Article  MathSciNet  Google Scholar 

  23. Liu Z, Dezert J, Mercier G, Pan Q (2012) Belief c-means: an extension of fuzzy c-means algorithm in belief functions framework. Pattern Recogn Lett 33(3):291–300

    Article  Google Scholar 

  24. Liu Z, Pan Q, Dezert J, Martin A (2018) Combination of classifiers with optimal weight based on evidential reasoning. IEEE Trans Fuzzy Systems 26(3):1217–1230

    Article  Google Scholar 

  25. Masson MH, Denoeux T (2008) Ecm: an evidential version of the fuzzy c-means algorithm. Pattern Recogn 41(4):1384– 1397

    Article  Google Scholar 

  26. Meng J, Fu D, Tang Y, Yang T, Zhang D (2019) A novel semi-supervised classification method based on soft evidential label propagation. IEEE Access 7:62210–62220

    Article  Google Scholar 

  27. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Amer Stat Assoc 66(336):846–850

    Article  Google Scholar 

  28. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  29. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, Er MJ, Ding W, Lin CT (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681

    Article  Google Scholar 

  30. Shafer G (1976) A mathematical theory of evidence, vol 42. Princeton University Press, Princeton

    MATH  Google Scholar 

  31. Song Y, Wang X, Wu W, Quan W, Huang W (2018) Evidence combination based on credibility and non-specificity. Pattern Anal Applic 21(1):167–180

    Article  MathSciNet  Google Scholar 

  32. Sreenivasulu G, Raju SV, Rao NS (2017) Review of clustering techniques. In: Proceedings of the International Conference on Data Engineering and Communication Technology. Springer, pp 523–535

  33. Su Z, Denoeux T (2019) BPEC: Belief-peaks evidential clustering. IEEE Trans Fuzzy Syst 27(1):111–123

    Article  Google Scholar 

  34. Zg S u, Denoeux T, Ys Hao, Zhao M (2018) Evidential k-nn classification with enhanced performance via optimizing a class of parametric conjunctive t-rules. Knowl-Based Syst 142 :7–16

    Article  Google Scholar 

  35. Xie J, Gao H, Xie W, Liu X, Grant PW (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors. Inf Sci 354:19–40

    Article  Google Scholar 

  36. Xu X, Zheng J, Jb Yang, Dl X u, Yw Chen (2017) Data classification using evidence reasoning rule. Knowl-Based Syst 116:144–151

    Article  Google Scholar 

  37. Yang T, Fu D, Li X (2017) Semi-supervised classification of multiple kernels embedding manifold information. Clust Comput 20(4):3417–3426

    Article  Google Scholar 

  38. Yaohui L, Zhengming M, Fang Y (2017) Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy. Knowl-Based Syst 133:208–220

    Article  Google Scholar 

  39. Yu J, Kim SB (2018) Consensus rate-based label propagation for semi-supervised classification. Inf Sci 465:265–284

    Article  MathSciNet  Google Scholar 

  40. Zhang J, Deng Y (2017) A method to determine basic probability assignment in the open world and its application in data fusion and classification. Appl Intell 46(4):934–951

    Article  MathSciNet  Google Scholar 

  41. Zhou K, Martin A, Pan Q, Liu Z (2016) Ecmdd: Evidential c-medoids clustering with multiple prototypes. Pattern Recogn 60:239–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Fu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Nature Science Foundation of China under Grant 51871024, and in part by the National Key R&D Program of China under Grant 2017YFB0702104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Fu, D. & Tang, Y. Belief-peaks clustering based on fuzzy label propagation. Appl Intell 50, 1259–1271 (2020). https://doi.org/10.1007/s10489-019-01576-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01576-4

Keywords

Navigation