Skip to main content
Log in

Titania-based porous nanocomposites for potential environmental applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titania–zeolite Y composites were synthesized by a facile solid-state dispersion method. The synergistic effects of porous zeolite structure and novel photocatalysis properties of titania nanoparticles were exploited. The physical properties of the composites were characterized by scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, diffuse reflectance spectroscopy, fourier transform infra-red spectroscopy and photoluminescence spectroscopy. Porosity and surface area of the composites were determined from Brunauer–Emmett–Teller studies. The antibacterial effect and the photocatalysis properties of these composites were studied. Composites exhibited higher growth reduction of Escherichia coli and Staphylococcus aureus as compared with the pure forms (P25 titania and zeolite Y). Maximum growth reduction of both types of bacterial cells (gram-positive as well as gram-negative) was observed with 20% titania–zeolite composite. The composite demonstrated 40 and 30% enhancement in the growth reduction of E. coli and S. aureus, respectively, as compared with the pure forms; 10% composite exhibited 50% enhancement in the photocatalysis efficiency of methylene blue dye degradation as compared with P25 titania nanoparticles and led to a complete removal of the dye in the first 60 min of photocatalysis process. Mechanisms for both applications have been proposed in light of the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matsunaga T 1985 J. Antibact. Antifun. Agents 13 211

    CAS  Google Scholar 

  2. Matsunaga T, Tomoda R, Nakajima T and Wake H 1985 FEMS Microbiol. Lett. 29 211

    CAS  Google Scholar 

  3. Marambio-Jones C and Hoek E M 2010 J. Nanopart. Res. 12 1531

    CAS  Google Scholar 

  4. Bhuyan T, Mishra K, Khanuja M, Prasad R and Varma A 2015 Mater. Sci. Semicond. Process. 32 55

    CAS  Google Scholar 

  5. Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy M R, Anand S et al 2015 J. Nanopart. Res. 17 288

    Google Scholar 

  6. Wiener J, Quinn J P, Bradford P A, Goering R V, Nathan C, Bush K et al 1999 J. Am. Med. Assoc. 281 517

    CAS  Google Scholar 

  7. Osset S, Keller N, Lett M C, Ledoux M J and Keller V 2008 Chem. Soc. Rev. 37 744

    Google Scholar 

  8. Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy R R et al 2017 Surf. Interface 6 247

    CAS  Google Scholar 

  9. Mo A, Liao J, Xu W, Xian S, Li Y and Bai S 2008 Appl. Surf. Sci. 255 435

    CAS  Google Scholar 

  10. Rivera-Garza M, Olguın M T, Garcıa-Sosa I, Alcántara D and Rodrıguez-Fuentes G 2000 Microporous Mesoporous Mater. 39 431

    CAS  Google Scholar 

  11. Matsumura Y, Yoshikata K, Kunisaki S I and Tsuchido T 2003 Appl. Environ. Microbiol. 69 4278

    CAS  Google Scholar 

  12. Top A and Ülkü S 2004 Appl. Clay Sci. 27 13

    CAS  Google Scholar 

  13. Matos J, Laine J and Herrmann J M 1998 Appl. Catal. B 18 281

    CAS  Google Scholar 

  14. Takeda N, Torimoto T, Sampath S, Kuwabata S and Yoneyama H 1995 J. Phys. Chem. 99 9986

    CAS  Google Scholar 

  15. Torimoto T, Okawa Y, Takeda N and Yoneyama H 1997 J. Photochem. Photobiol. A 103 153

    CAS  Google Scholar 

  16. Takeda N, Iwata N, Torimoto T and Yoneyama H 1998 J. Catal. 177 240

    CAS  Google Scholar 

  17. Xia H, He G, Min Y and Liu T 2015 J. Mater. Sci.: Mater. Electron. 26 3357

    CAS  Google Scholar 

  18. Shalan A, Rasly M and Rashad M O 2014 J. Mater. Sci.: Mater. Electron. 25 3141

    CAS  Google Scholar 

  19. Kun R, Mogyorósi K and Dékány I 2006 Appl. Clay Sci. 32 99

    CAS  Google Scholar 

  20. Durgakumari V, Subrahmanyam M, Rao K S, Ratnamala A, Noorjahan M and Tanaka K 2002 Appl. Catal. A 234 155

    CAS  Google Scholar 

  21. Zhang W, Wang K, Yu Y and He H 2010 Chem. Eng. J. 163 62

    CAS  Google Scholar 

  22. Noorjahan M, Kumari V D, Subrahmanyam M and Boule P 2004 Appl. Catal. B 47 209

    CAS  Google Scholar 

  23. Choudhary A, Das B and Ray S 2015 Dalton Trans. 44 3753

    CAS  Google Scholar 

  24. Park O K and Kang Y S 2005 Colloid Surf. A: Physicochem. Eng. Asp. 257 261

    Google Scholar 

  25. Liu Z, Liu Z, Cui T, Dong L, Zhang J, Han L et al 2014 Mater. Express 4 465

    CAS  Google Scholar 

  26. Haghi M, Hekmatafshar M, Janipour M B, Gholizadeh S S, Faraz M K, Sayyadifar F et al 2012 Int. J. Adv. Biotechnol. Res. 3 621

    CAS  Google Scholar 

  27. Alwash A H, Abdullah A Z and Ismail N 2013 Int. J. Chem. Mol. Eng. 7 375

    Google Scholar 

  28. Easwaramoorthi S and Natarajan P 2005 Microporous Mesoporous Mater. 86 185

    CAS  Google Scholar 

  29. Santo C E, Lam E W, Elowsky C G, Quaranta D, Domaille D W, Chang C J et al 2011 Appl. Environ. Microbiol. 77 794

    CAS  Google Scholar 

  30. Macomber L and Imlay J A 2009 Proc. Natl. Acad. Sci. 106 8344

    CAS  Google Scholar 

  31. Xu W P, Zhang L C, Li J P, Lu Y, Li H H, Ma Y N et al 2011 J. Mater. Chem. 21 4593

    CAS  Google Scholar 

  32. Yu J C, Ho W, Lin J, Yip H and Wong P K 2003 Environ. Sci. Technol. 37 2296

    CAS  Google Scholar 

  33. Jones N, Ray B, Ranjit K T and Manna A C 2008 FEMS Microbiol. Lett.279 71

    CAS  Google Scholar 

  34. Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J and Roy S S 2017 RSC Adv.7 26680

    CAS  Google Scholar 

  35. Poonia E, Dahiya M S, Tomer V K, Kumar K, Kumar S and Duhan S 2018 Physica E101 284

    CAS  Google Scholar 

  36. Wu M H, Li L, Xue Y C, Xu G, Tang L, Liu N et al 2018 Appl. Catal. B: Environ.228 103

    CAS  Google Scholar 

  37. Ashraf W, Fatima T, Srivastava K and Khanuja M 2019 Appl. Nanosci. https://doi.org/10.1007/s13204-019-00951-4

  38. Sharma R, Khanuja M, Islam S S and Varma A 2017 Res. Chem. Intermed. 43 5345

    CAS  Google Scholar 

  39. Baral A, Khanuja M, Islam S S, Sharma R and Mehta B R 2017 J. Lumin. 183 383

    CAS  Google Scholar 

  40. Li G, Dimitrijevic N M, Chen L, Nichols J M, Rajh T and Gray K A 2008 J. Am. Chem. Soc. 130 5402

    CAS  Google Scholar 

  41. Wang C C, Lee C K, Lyu M D and Juang L C 2008 Dyes Pigm.76 817

    CAS  Google Scholar 

  42. Dariani R S, Esmaeili A, Mortezaali A and Dehghanpour S 2016 Optik127 7143

    CAS  Google Scholar 

  43. Shinde D R, Tambade P S, Chaskar M G and Gadave K M 2017 Drink. Water Eng. Sci. 10 109

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Indian Institute of Technology (IIT), Delhi, for providing support in XRD characterization of the photocatalysts. Authors would also like to extend thanks to Chemistry Research Centre, Bangalore Institute of Technology, for conducting BET analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wadhwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1091 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, S., Mathur, A., Pendurthi, R. et al. Titania-based porous nanocomposites for potential environmental applications. Bull Mater Sci 43, 47 (2020). https://doi.org/10.1007/s12034-019-2009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2009-8

Keywords

Navigation