Skip to main content
Log in

Calibration of Laser Penetration Depth and Absorptivity in Finite Element Method Based Modeling of Powder Bed Fusion Melt Pools

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 25 February 2020

This article has been updated

Abstract

A systematic parametric study was conducted using thermal finite element method simulations in order to calibrate the laser penetration depth and absorptivity as a function of the laser power and scan speed for single tracks of Alloy 718 processed by laser powder bed fusion. A methodology was developed to calibrate both laser penetration depth and absorptivity using an algorithm proposed. Calibrated laser penetration depths and absorptivities captured experimentally observed variations of the melt pool depth and width with the laser power and scan speed, and showed strong correlations with a modified energy density, which is the laser power normalized by a square root of the scan speed (W/(m/s)1/2). The result indicated that the laser penetration depth and absorptivity heavily influence the determination of the melt pool depth and width, respectively. Variations of calibrated laser penetration depths and absorptivities with the laser power and scan speed reasonably depicted physical phenomena related with how incident laser beam interacts with the melt pool under different input energy densities, and were in quantitative agreement with those calculated from an analytical model and observed from the experiment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 25 February 2020

    In the original publication of the article, Fig. 15 was published incorrectly.

References

  1. S. Jelvani, R.S. Razavi, M. Barekat, M. Dehnavi, Met. Mat. Int. (2019). https://doi.org/10.1007/s12540-019-00355-7

    Article  Google Scholar 

  2. G.I. Suprobo, A.A. Ammar, N. Park, E.R. Baek, S. Kim, Met. Mat. Int. 25, 1428 (2019)

    Article  CAS  Google Scholar 

  3. M. Roudnická, O. Molnárová, D. Dvorský, L. Křivský, D. Vojtěch, Met. Mat. Int. (2019). https://doi.org/10.1007/s12540-019-00504-y

    Article  Google Scholar 

  4. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mat. Process. Technol. 214, 2915 (2014)

    Article  Google Scholar 

  5. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, Mat. Sci. Technol. 31, 957 (2015)

    Article  CAS  Google Scholar 

  6. Z. Luo, Y. Zhao, Addit. Manuf. 21, 318 (2018)

    Google Scholar 

  7. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Appl. Phys. Rev. 2, 041304 (2015)

    Article  Google Scholar 

  8. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

    Article  CAS  Google Scholar 

  9. R. Acharya, J.A. Sharon, A. Staroselsky, Acta Mater. 124, 360 (2017)

    Article  CAS  Google Scholar 

  10. L.E. Criales, Y.M. Arısoya, B. Laneb, S. Moylanb, A. Donmezb, T. Özel, Addit. Manuf. 13, 14 (2017)

    CAS  Google Scholar 

  11. Y.S. Lee, W. Zhang, Addit. Manuf. 12, 178 (2016)

    CAS  Google Scholar 

  12. N. Shen, K. Chou, MSEC2012-7253, p. 287 (2013)

  13. B. Cheng and K. Chou, in Proceedings of the Solid Freeform Fabrication Symposium, 644 (2013)

  14. C.H. Fu, Y.B. Guo, J. Manuf. Sci. Eng. 136, 061004 (2014)

    Article  Google Scholar 

  15. J. Yin, H. Zhu, L. Ke, P. Hu, C. He, H.Z.X. Zeng, Int. J. Adv. Manuf. Technol. 83, 1847 (2016)

    Article  Google Scholar 

  16. E.R. Denlinger, V. Jagdale, G.V. Srinivasan, T. El-Wardany, P. Michaleris, Addit. Manuf. 11, 7 (2016)

    CAS  Google Scholar 

  17. A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Mat. Des. 89, 255 (2016)

    CAS  Google Scholar 

  18. M. Jamshidinia, F. Kong, R. Kovacevic, J. Manuf. Sci. Eng. 135, 061010 (2013)

    Article  Google Scholar 

  19. K. Karayagiz, A. Elwany, G. Tapia, B. Franco, L. Johnson, J. Ma, I. Karaman, R. Arróyave, IISE Transactions 51, 136 (2019)

    Article  Google Scholar 

  20. AMADA, Laser welding fundamental

  21. J.H. Ho, S.J. Na, J. Phys. D Appl. Phys. 39, 5372 (2006)

    Article  Google Scholar 

  22. A. Kaplan, J. Phys. D Appl. Phys. 27, 1805 (1994)

    Article  CAS  Google Scholar 

  23. A. De, S.K. Maiti, C.A. Walsh, H.K.D.H. Bhadeshia, Sci. Technol. Weld. Join. 8, 377 (2003)

    Article  Google Scholar 

  24. Z. Zhang, Y. Huang, A.R. Kasinathan, S.I. Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, Optics Laser Technol. 109, 297 (2019)

    Article  CAS  Google Scholar 

  25. U. Umer, W. Ameen, M.H. Abidi, K. Moiduddin, H. Alkhalefah, M. Alkahtani, A. Al-Ahmari, Metals 9, 806 (2019)

    Article  CAS  Google Scholar 

  26. D. Dye, O. Hunziker, S.M. Roberts, R.C. Reed, Metall. Mat. Trans. A 32, 1713 (2001)

    Article  Google Scholar 

  27. A. De, T. DebRoy, J. Appl. Phys. 95, 5230 (2004)

    Article  CAS  Google Scholar 

  28. S. Yagi, D. Kunii, AIChE J. 3, 373 (1957)

    Article  CAS  Google Scholar 

  29. ABAQUS user manual, subroutine (DFLUX, UMATHT)

  30. S.K. Rauniyar, K. Chou, JOM 71, 938 (2019)

    Article  CAS  Google Scholar 

  31. A.K. Mishra, A. Aggarwal, A. Kumar, N. Sinha, Int. J. Adv. Manuf. Technol. 99, 2257 (2018)

    Article  Google Scholar 

  32. J. Goldak, A. Chakravarti, M. Bibby, Metall. Tracs. B 15, 299 (1984)

    Article  Google Scholar 

  33. C.S. Wu, H.G. Wang, Y.M. Zhang, Welding J 85(12), 284 (2006)

    Google Scholar 

  34. C. Lampa, A.F.H. Kaplan, J. Powell, C. Magnusson, J. Phys. D Appl. Phys. 30, 1293 (1997)

    Article  CAS  Google Scholar 

  35. U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.R. Delplanque, J.M. Schoenung, Mat. Des. 113, 331 (2017)

    Google Scholar 

  36. A.N. Rubenchik, W.E. King, S.S. Wu, J. Mat. Process. Technol. 257, 234 (2018)

    Article  Google Scholar 

  37. T.W. Eagar, N.-S. Tsai, Weld. J. 62, 346 (1983)

    Google Scholar 

  38. H. Wang, Y. Zou, Int. J. Heat Transfer 142, 118473 (2019)

    Article  CAS  Google Scholar 

  39. R. Fabbro, K. Chouf, J. Appl. Phys. 87, 4075 (2000)

    Article  CAS  Google Scholar 

  40. P. Solana, G. Negro, J. Phys. D Appl. Phys. 30, 3216 (1997)

    Article  CAS  Google Scholar 

  41. K.N. Lankalapalli, J.F. Tu, M. Gartner, J. Phys. D Appl. Phys. 29, 1831 (1996)

    Article  CAS  Google Scholar 

  42. C.A. Walsh, Materials Science and Metallurgy Department, University of Cambridge, England (2002).

  43. J. Dowden, P. Kapadia, J. Phys. D Appl. Phys. 28, 2252 (1995)

    Article  CAS  Google Scholar 

  44. J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, Appl. Mat. Today 9, 341 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Industrial Strategic Technology Development Program [10077677] and the Technology Innovation Program [20000201] funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, S., Hong, JK. et al. Calibration of Laser Penetration Depth and Absorptivity in Finite Element Method Based Modeling of Powder Bed Fusion Melt Pools. Met. Mater. Int. 26, 891–902 (2020). https://doi.org/10.1007/s12540-019-00599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00599-3

Keywords

Navigation