Skip to main content
Log in

Performance of Novel TWO-CAP (Thin-Walled Open Channel Angular Pressing) Method on AA5083

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Newly developed severe plastic deformation (SPD) method TWO-CAP was applied to AA5083 to increase its mechanical properties. The method was developed to obtain the structural beams which have a thin-walled open-cross section area in high strength to weight ratio. During the TWO-CAP process, the annealed U-profile specimens will be pressed along the specifically designed die channel with the help of the hydraulic press machine. After the expansion and narrowing processes, the specimen leaves the die with initial dimensions at the end of each pass. Therefore, the material gains strength, hardness, and toughness while the microstructure of the material was improved as a result of the SPD. In order to determine the effect of the TWO-CAP on the mechanical properties of the material, the hardness and tension tests were carried out on the all passed specimens. Also, the characteristic investigations were performed on the specimens by using optical microscopy, SEM–EDS, and XRD analyses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.Z. Valiev, Superior strength in ultrafine-grained materials produced by SPD processing. Mater. Trans. 55, 13–18 (2014). https://doi.org/10.2320/matertrans.MA201325

    Article  CAS  Google Scholar 

  2. P.W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48, 825–847 (1935). https://doi.org/10.1103/PhysRev.48.825

    Article  CAS  Google Scholar 

  3. V.M. Segal, The method of material preparation for subsequent working. Pat USSR 575892, 330 (1977)

    Google Scholar 

  4. J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro, Development of repetitive corrugation and straightening. Mater. Sci. Eng. A 371, 35–39 (2004). https://doi.org/10.1016/S0921-5093(03)00114-X

    Article  CAS  Google Scholar 

  5. H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng., A 497, 132–138 (2008). https://doi.org/10.1016/j.msea.2008.06.025

    Article  CAS  Google Scholar 

  6. M. Richert, H.P. Stüwe, M.J. Zehetbauer, J. Richert, R. Pippan, C. Motz, E. Schafler, Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Mater. Sci. Eng. A 355, 180–185 (2003). https://doi.org/10.1016/S0921-5093(03)00046-7

    Article  CAS  Google Scholar 

  7. H. Kaya, M. Uçar, A. Cengiz, R. Samur, D. Özyürek, A. Çalişkan, Novel molding technique for ECAP process and effects on hardness of AA7075. Mechanika 20, 5–10 (2014). https://doi.org/10.5755/j01.mech.20.1.4207

    Article  Google Scholar 

  8. K. Özbeyaz, H. Kaya, A. Kentli, M. Şahbaz, S. Öğüt, Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy. Indian J. Chem. Technol. 26, 266–269 (2019)

    Google Scholar 

  9. M. Şahbaz, H. Kaya, A. Kentli, M. Uçar, S. Öğüt, K. Özbeyaz, Experimental comparison of Al5083 alloy subjected to annealing and equal-channel angular pressing. Int J Comput Exp Sci Eng 5, 52–55 (2019). https://doi.org/10.22399/IJCESEN.394542

    Article  Google Scholar 

  10. M. Şahbaz, H. Kaya, A. Kentli, M. Uçar, S. Öğüt, K. Özbeyaz, Analytical and numerical analysis comparison of equal channel angular pressing for Al5083 alloy. Adv. Sci. Eng. Med. 11, 1100–1103 (2019). https://doi.org/10.1166/asem.2019.2461

    Article  CAS  Google Scholar 

  11. R. Gupta, S. Srivastava, N.K. Kumar, S.K. Panthi, High leaded tin bronze processing during multi-directional forging: effect on microstructure and mechanical properties. Mater. Sci. Eng. A (2016). https://doi.org/10.1016/j.msea.2015.12.068

    Article  Google Scholar 

  12. Y. Beygelzimer, D. Orlov, V. Varyukhin, A new severe plastic deformation method: Twist extrusion, TMS Annual Meeting (Wiley, Hoboken, 2002), pp. 297–304

    Google Scholar 

  13. G. Faraji, A. Babaei, M. Mosavi Mashadi, K. Abrinia, Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater. Lett. 77, 82–85 (2012). https://doi.org/10.1016/j.matlet.2012.03.007

    Article  CAS  Google Scholar 

  14. A. Zangiabadi, M. Kazeminezhad, Development of a novel severe plastic deformation method for tubular materials: tube Channel Pressing (TCP). Mater. Sci. Eng. A 528, 5066–5072 (2011). https://doi.org/10.1016/j.msea.2011.03.012

    Article  CAS  Google Scholar 

  15. Şahbaz M (2019) Development of a novel severe plastic deformation method for a thin-walled open section beam: thin-walled open channel angular pressing (TWO-CAP). PhD Dissertation, Marmara University

  16. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143–146 (1996). https://doi.org/10.1016/1359-6462(96)00107-8

    Article  CAS  Google Scholar 

  17. E.J. Hearn, Theories of Elastic Failure. Mech. Mater. 1, 401–429 (1997). https://doi.org/10.1016/B978-075063265-2/50016-5

    Article  Google Scholar 

  18. S.Y. Chang, Ahn B. Du, S.K. Hong, S. Kamado, Y. Kojima, D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy. J. Alloys. Compd. 386, 197–201 (2005). https://doi.org/10.1016/j.jallcom.2004.03.148

    Article  CAS  Google Scholar 

  19. M. Popovic, B. Verlinden, Microstructure and mechanical properties of Al-4 4 wt.%Mg alloy (AA5182) after equal channel angular pressing. Mater. Sci. Technol. 21, 606–612 (2005). https://doi.org/10.1179/174328405X38320

    Article  CAS  Google Scholar 

  20. E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64, 747–753 (1951). https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  21. N. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 173, 25–28 (1953)

    Google Scholar 

  22. N.H. Heo, Y.U. Heo, S.K. Kwon, N.J. Kim, S.J. Kim, H.C. Lee, Extended hall-petch relationships for yield, cleavage and intergranular fracture strengths of bcc steel and its deformation and fracture behaviors. Met. Mater. Int. 24, 265–281 (2018). https://doi.org/10.1007/s12540-018-0026-6

    Article  CAS  Google Scholar 

  23. E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int. J. Adv. Manuf. Technol. 100, 1647–1694 (2019)

    Article  Google Scholar 

  24. K. Edalati, Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT). Adv. Eng. Mater. 21, 1800272 (2019)

    Article  Google Scholar 

  25. K.T. Park, S.H. Myung, D.H. Shin, C.S. Lee, Size and distribution of particles and voids pre-existing in equal channel angular pressed 5083 Al alloy: their effect on cavitation during low-temperature superplastic deformation. Mater. Sci. Eng. A 371, 178–186 (2004). https://doi.org/10.1016/j.msea.2003.11.042

    Article  CAS  Google Scholar 

  26. K.T. Park, J.H. Park, Y.S. Lee, W.J. Nam, Microstructures developed by compressive deformation of coarse grained and ultrafine grained 5083 Al alloys at 77 K and 298 K. Mater. Sci. Eng. A 408, 102–109 (2005). https://doi.org/10.1016/j.msea.2005.07.040

    Article  CAS  Google Scholar 

  27. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  28. K.S. Suresh, N.P. Gurao, D.S. Singh, S. Suwas, K. Chattopadhyay, S.V. Zherebtsov, G.A. Salishchev, Effect of equal channel angular pressing on grain refinement and texture evolution in a biomedical alloy Ti13Nb13Zr. Mater. Charact. 82, 73–85 (2013). https://doi.org/10.1016/j.matchar.2013.05.003

    Article  CAS  Google Scholar 

  29. G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34–46 (1956). https://doi.org/10.1080/14786435608238074

    Article  CAS  Google Scholar 

  30. S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y. Futamura, Microstructure development of steel during severe plastic deformation. Met. Mater. Int. 10, 533–539 (2004). https://doi.org/10.1007/BF03027415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Mehmet UÇAR for his support in the laboratory studies. This study was funded by Marmara University, Commission of Scientific Research Project (FEN-C-DRP-120417-0183, FEN-P-141118-0602, and FEN-A-090217-0045). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Şahbaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahbaz, M., Kentli, A. & Kaya, H. Performance of Novel TWO-CAP (Thin-Walled Open Channel Angular Pressing) Method on AA5083. Met. Mater. Int. 27, 2430–2437 (2021). https://doi.org/10.1007/s12540-019-00594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00594-8

Keywords

Navigation