Skip to main content
Log in

Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of Diels-Alder reaction cross-linked thermosets with recyclability and healability were prepared from furan-containing aromatic polyamide and bismaleimides with different chemical structures. The structures of synthesized bismaleimides were confirmed by 1H nuclear magnetic resonance (1H-NMR) spectroscopy; their reversible cross-linking with the furanic polyamide was further detected by 1H-NMR technique and sol-gel transition behavior. The dynamic mechanical analysis and tensile test revealed the variable thermal and mechanical properties of thermosets cross-linked by different bismaleimides and with different molar ratios of maleimide group to furan group (Ima/fur). The tensile test also demonstrated that the better recyclability and solvent-assisted healability of thermosets cross-linked could be achieved by more flexible bismaleimides. This work is expected to provide valuable information for design of recyclable and healable high-performance thermosets with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater.2017, 29, 1604460.

    Google Scholar 

  2. Chang, G.; Wang, C.; Du, M.; Liu, S.; Yang, L. Metal-coordination crosslinked N-polyindoles as recyclable high-performance thermosets and nondestructive detection for their tensile strength and glass transition temperature. Chem. Commun.2018, 54, 2906–2909.

    CAS  Google Scholar 

  3. Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules2018, 51, 9816–9824.

    CAS  Google Scholar 

  4. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym. Chem.2012, 3, 935–945.

    CAS  Google Scholar 

  5. Montarnal, D.; Capelot, M.; Tournilhac, C.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science2011, 334, 965–968.

    PubMed  CAS  Google Scholar 

  6. Colquhoun, H. M. Self-repairing polymers: Materials that heal themselves. Nat. Chem.2012, 4, 435–436.

    PubMed  CAS  Google Scholar 

  7. Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R.; Cheng, J. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater.2016, 28, 7646–7651.

    PubMed  CAS  Google Scholar 

  8. Ogden, W. A.; Guan, Z. Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc.2018, 140, 6217–6220.

    PubMed  CAS  Google Scholar 

  9. Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc.2015, 137, 4846–4850.

    PubMed  CAS  Google Scholar 

  10. Ma, S.; Webster, D. C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci.2018, 76, 65–110.

    CAS  Google Scholar 

  11. Garcia, J. M.; Jones, J. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Hedrick, J. L. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science2014, 344, 732–735.

    PubMed  CAS  Google Scholar 

  12. Arslan, M.; Kiskan, B.; Yagci, Y. Benzoxazine-based thermosets with autonomous self-healing ability. Macromolecules2015, 48, 1329–1334.

    CAS  Google Scholar 

  13. Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M. L.; Ge, Q. Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun.2018, 9, 1831.

    PubMed  PubMed Central  Google Scholar 

  14. Mueller, E.; Alsop, R. J.; Scotti, A.; Bleuel, M.; Rheinstädter, M. C.; Richtering, W.; Hoare, T. Dynamically cross-linked self-assembled thermoresponsive microgels with homogeneous internal structures. Langmuir2018, 34, 1601–1612.

    PubMed  CAS  Google Scholar 

  15. Schmolke, W.; Perner, N.; Sciffert, S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing. Macromolecules2015, 48, 8781–8788.

    CAS  Google Scholar 

  16. Zhang, C.; Liu Z.; Shi, Z.; Yin, J.; Tian, M. Versatile approach to building dynamic covalent polymer networks by stimulating the dormant groups. ACS Macro Lett.2018, 7, 1371–1375.

    CAS  Google Scholar 

  17. Wang, Z.; Pan, Q. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater.2017, 27, 1700690.

    Google Scholar 

  18. Roy, N.; Bruchmann, B.; Lehn, J. M. Dynamers: Dynamic polymers as self-healing materials. Chem. Soc. Rev.2015, 44, 3786–3807.

    PubMed  CAS  Google Scholar 

  19. Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: From old chemistry to modern day innovations. Adv. Mater.2017, 29, 1606100.

    Google Scholar 

  20. Chen, X.; Dam, M. A.; Ono, K.; Mal, J.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science2002, 295, 1698–1702.

    PubMed  CAS  Google Scholar 

  21. Heo, Y.; Malakooti, M. H.; Sodano, H. A. Self-healing polymers and composites for extreme environments. J. Mater. Chem. A2016, 4, 17403–17411.

    CAS  Google Scholar 

  22. Fu, G.; Li, Y.; Liang G.; Gu, A. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J. Mater. Chem. A2016, 4, 4232–4241.

    CAS  Google Scholar 

  23. Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolay, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules2012, 45, 142–149.

    CAS  Google Scholar 

  24. Du, X.; Li, J.; Welle, A.; Li, L.; Feng, W.; Levkin, P. A. Reversible and rewritable surface functionalization and patterning via photodynamic disulfide exchange. Adv. Mater.0015, 27, 4997–5001.

    Google Scholar 

  25. Black, S. P.; Sanders, J. K.; Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev.2014, 43, 1861–1872.

    PubMed  CAS  Google Scholar 

  26. Zhang, H.; Cai, C.; Liu, W.; Li, D.; Zhang, J.; Zhao, N.; Xu, J. Recyclable polydimethylsiloxane network crosslinked by dynamic transesterification reaction. Sci. Rep.2017, 7, 11833.

    PubMed  PubMed Central  Google Scholar 

  27. Gandini, A. The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis. Prog. Polym. Sci.2013, 38, 1–29.

    CAS  Google Scholar 

  28. Dewar, M. J. S.; Pierini, A. B. Mechanism of the Diels-Alder reaction. Studies of the addition of maleic anhydride to furan and methylfurans. J. Am. Chem. Soc.1984, 106, 203–208.

    CAS  Google Scholar 

  29. Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired high-performance and recyclable cross-linked polymers. Adv. Mater.2013, 25, 4912–4917.

    PubMed  CAS  Google Scholar 

  30. Yang, Y.; Urban, M. W. Self-repairable polyurethane networks by atmospheric carbon dioxide and water. Angew. Chem. Int. Ed.2014, 53, 12142–12147.

    CAS  Google Scholar 

  31. Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun R.; Wong, C. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A2014, 2, 20642–20649.

    CAS  Google Scholar 

  32. Zeng, C.; Scino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Bio-based furan polymers with self-healing ability. Macromolecules2013, 46, 1794–1802.

    CAS  Google Scholar 

  33. Zeng, C.; Scino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer2013, 54, 5351–5357.

    CAS  Google Scholar 

  34. Trovatti, E.; Lacerda, T. M.; Carvalho, A. J.; Gandini, A. Recycling tires? Reversible crosslinking of poly(butadiene). Adv. Mater.2011, 27, 2242–2245.

    Google Scholar 

  35. Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products? Macromolecules2015, 48, 7095–7105.

    Google Scholar 

  36. Zhao, J.; Xu, R.; Luo, G.; Wu, J.; Xia, H. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J. Mater. Chem. B2016, 4, 982–989.

    CAS  Google Scholar 

  37. Bera, R.; Mondal, S.; Das, N. Nanoporous triptycene based network polyamides (TBPs) for selective CO2 uptake. Polymer2017, 111, 275–284.

    CAS  Google Scholar 

  38. Duan, J.; Pan, Y.; Pacheco, F.; Litwiller, E.; Lai, Z.; Pinnau, I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Memb. Sci.2015, 476, 303–310.

    CAS  Google Scholar 

  39. Garcia, J. M.; Garcia F. C.; Serna, F.; de la Peña, J. High-performance aromatic polyamides. Prog. Polym. Sci.2010, 35, 623–686.

    CAS  Google Scholar 

  40. Luo, K.; Li, J.; Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Comb-shaped aromatic polyamide cross-linked by Diels-Alder chemistry: Towards recyclable and high-performance thermosets. Polymer2018, 142, 33–42.

    CAS  Google Scholar 

  41. Li, J.; Zhang, G.; Deng, L.; Jiang, K.; Zhao, S.; Gao, Y.; Sun, R.; Wong, C. Thermally reversible and self-healing novolac epoxy resins based on Diels-Alder chemistry. J. Appl. Polym. Sci.2015, 132, 42167.

    Google Scholar 

  42. Wang, A.; Niu, H.; He, Z.; Li, Y. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym. Chem.2017, 8, 4494–4502.

    CAS  Google Scholar 

  43. Toncelli, C.; De Reus, D. C.; Picchioni, F.; Broekhuis, A. A. Properties of reversible Diels-Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys.2012, 213, 157–165.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51473031), the Natural Science Foundation of Shanghai (No. 17ZR1401100), and the doctoral innovation foundation (No. CUSF-DH-D-2017037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Zu-Ming Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, KJ., Huang, LB., Wang, Y. et al. Tailoring the Properties of Diels-Alder Reaction Crosslinked High-performance Thermosets by Different Bismaleimides. Chin J Polym Sci 38, 268–277 (2020). https://doi.org/10.1007/s10118-019-2328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2328-7

Keywords

Navigation