Skip to main content
Log in

Ethylene-Propene Copolymerization with C1-symmetric ansa-Fluorenyl-zirconocene Catalysts: Effects of Catalyst Structure and Comonomer on Molar Mass

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Ethylene-propene copolymers have been synthesized by three C1-symmetric metallocene molecules (1, 2, and 3), having tert-butyl substituents on the Cp moiety, on the fluorenyl moiety, or on both moieties, and methylaluminoxane (MAO) at different polymerization temperatures and monomer concentrations. Copolymers were investigated by 13C-NMR, 1H-NMR, and SEC analyses. A relationship was found between [EEE]/[E] ratios and copolymer molar masses in each series: the higher the [EEE]/[E] ratio, the lower the copolymer molar mass. At parity of [EEE]/[E] ratio, copolymer molar mass follows the order 1 >> 3 > 2. Chain end group analysis reveals that copolymers mainly terminate when propene is the last inserted unit, confirming that it is the greater facility of Mt-P-E-poly(E-co-P) to terminate that influences the copolymer molar mass. Among the catalysts considered, catalyst 1, which gives syndiospecific polypropene, gives greater activities, comonomer incorporation, and molar masses. Catalyst 3, which gives isospecific polypropene, in copolymerization performs better than 2, having the same bridge, with respect to activities, ethylene content, and molar masses. The good performance of this catalyst arises from the not necessity of polymer chain to back skip when ethylene is the last inserted unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturzel, M.; Mihan, S.; Mulhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev.2016, 116, 1398–1433.

    PubMed  Google Scholar 

  2. Busico, V. Metal-catalysed olefin polymerisation into the new millennium: A perspective outlook. Dalton Trans.2009, 8794–8802.

  3. Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed.1995, 34, 1143–1170.

    CAS  Google Scholar 

  4. Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Selectivity in propene polymerization with metallocene catalysts. Chem. Rev. 2000, 100, 1253–1345.

    CAS  PubMed  Google Scholar 

  5. Razavi, A.; Thewalt, U. Site selective ligand modification and tactic variation in polypropylene chains produced with metallocene catalysts. Coord. Chem. Rev.2006, 250, 155–169.

    CAS  Google Scholar 

  6. Kaminsky, W.; Sperber, O.; Werner, R. Pentalene substituted metallocene complexes for olefin polymerization. Coord. Chem. Rev.2006, 250, 110–117.

    CAS  Google Scholar 

  7. Spalech, W.; Kuber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometallics1994, 13, 954–963.

    Google Scholar 

  8. Spaleck, W.; Antberg, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Krprof, B.; Behm, J.; Herrmann, A. W. High-molecular-weight polypropylene through specifically designed zirconocene catalysts. Angew. Chem.1992, 31, 1347–1350.

    Google Scholar 

  9. Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H. H.; Jungling, S.; Mulhaupt, R.; Langahuster, F. ansa-Zirconocene polymerization catalysts with annelated ring ligands-effects on catalytic activity and polymer-chain lenght. Organometallics1994, 13, 964–970.

    CAS  Google Scholar 

  10. Kirillov, E.; Roisnel, T.; Razavi, A.; Carpentier, J. F. Group 4 post-metallocene complexes incorporating tridentate silyl-substituted bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands: Probing systems for “oscillating” olefin polymerization catalysis. Organometallics2009, 28, 5036–5051.

    CAS  Google Scholar 

  11. Fan, W.; Waymouth, R. M. Sequence and stereoselectivity of the C 1-symmetric metallocene Me2Si(1-(4,7-Me2Ind))(9-Flu)ZrCl2. Macromolecules2003, 36, 3010–3014.

    CAS  Google Scholar 

  12. Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. Syndiospecific propylene polymerizations with group-4 metallocenes. J. Am. Chem. Soc.1988, 110, 6255–6256.

    CAS  PubMed  Google Scholar 

  13. Razavi, A.; Atwood, J. L. Preparation and crystal-structures of the complexes (η 5-C5H3Me-CMe2-η 5-C13H8)MCL2 (M = Zr or Hf)—Mechanistic aspects of the catalytic formation of a syndiotactic-isotactic stereoblock-type polypropylene. J. Organomet. Chem.1995, 497, 105–111.

    CAS  Google Scholar 

  14. Razavi, A.; Atwood, J. L. Preparation and crystal-structures of the complexes (η 5-C5H4CPH2-η 5-C13H8)MCL2 (M = Zr, Hf) and the catalytic formation of high molecular weight-high tacticity-syndiotactic polypropylene. J. Organomet. Chem.1996, 520, 115–120.

    CAS  Google Scholar 

  15. Ewen, J. A.; Elder, M. J.; Jones, R. L.; Curtis, S.; Cheng, H. N. In Catalytic olefin polymerization, studies in surface science and catalysis. Eds. Keii, T. and Soga, K. Elsewier, New York, 1990, p. 439.

  16. Razavi, A.; Peters, L.; Nafpliotis, L.; Vereecke, D.; Den Dauw, K. The geometry of the site and its relevance for chain migration and stereospecificity. Macromol. Symp.1995, 89, 345–367.

    CAS  Google Scholar 

  17. Miller, S. A.; Bercaw, J. E. Mechanism of isotactic polypropylene formation with C-1-symmetric metallocene catalysts. Organometallics2006, 25, 3576–3592.

    CAS  Google Scholar 

  18. Boggioni, L.; Cornelio, M.; Losio, S.; Razavi, A.; Tritto I. Propene polymerization with C 1-symmetric fluorenyl-metallocene catalysts. Polymers2017, 9, 181–199.

    Google Scholar 

  19. Spaleck, W.; Antberg, M.; Dolle, V.; Klein, R.; Rohrmann, J.; Winter, A. Stereorigid metallocenes—Correlations between structure and behavior in homopolymerizations of propylene. J. Chem.1990, 13, 499–503.

    Google Scholar 

  20. Reybuck, S. E.; Meyer, A.; Waymouth, R. M. Copolymerization behavior of unbridged indenyl metallocenes: Substituent effects on the degree of comonomer incorporation. Macromolecules2002, 35, 637–643.

    CAS  Google Scholar 

  21. Tynys, A.; Saarinen, T.; Hakala, K.; Helaja, T.; Vanne, T.; Lehmus, P.; Löfgren, B. Ethylene-propylene copolymerisations: Effect of metallocene structure on termination reactions and polymer microstructure. Macromol. Chem. Phys.2005, 206, 1043–1056.

    CAS  Google Scholar 

  22. Yano, A.; Hasegawa, S.; Kaneko, T.; Sone, M.; Akimoto, A. Ethylene/1-hexene copolymerization with Ph2C(Cp)(Flu)ZrCl2 derivatives: Correlation between ligand structure and copolymerization behavior at high temperature. Macromol. Chem. Phys.1999, 200, 1542–1553.

    CAS  Google Scholar 

  23. Suhm, J.; Schneider, M. J.; Mulhaupt, R. Influence of metallocene structures on ethene copolymerization with 1-butene and 1-octene. J. Mol. Catal. A: Chem.1998, 128, 215–217.

    CAS  Google Scholar 

  24. Schneider, M. J.; Suhm, J.; Mulhaupt, R.; Prosenc, M.; Brintzinger, H. Influence of indenyl ligand substitution pattern on metallocene-catalyzed ethene copolymerization with 1-octene. Macromolecules1997, 30, 3164–3168.

    CAS  Google Scholar 

  25. Seraidaris, T.; Löfgren, B.; Seppälä, J. V.; Kaminsky, W. Copolymerization of propene with low amounts of ethene in propene bulk phase. Polymer2006, 47, 107–112.

    CAS  Google Scholar 

  26. Wang, D.; Tomasi, S.; Razavi, A.; Ziegler, T. Why do C1-symmetric ansa-zirconocene catalysts produce lower molecular weight polymers for ethylene/propylene copolymerization than for ethylene/propylene homopolymerization? Organometallics2008, 27, 2861–2867.

    CAS  Google Scholar 

  27. Busico, V.; Cipullo, R.; Talarico, G.; Segre, A. L.; Caporaso, L. High-field 13C NMR characterization of ethene-1-13C/propene copolymers prepared with Cs-symmetric ansa-metallocene catalysts: A deeper insight into the regio- and stereoselectivity of syndiotactic propene polymerization. Macromolecules1998, 31, 8720–8724.

    CAS  Google Scholar 

  28. Tritto, I.; Fan, Z, Q.; Locatelli, P.; Sacchi, M. C.; Camurati; Galimberti, M. 13C NMR-studies of ethylene-propylene copolymers prepared with homogeneous metallocene-based Ziegler-Natta catalysts. Macromolecules1995, 28, 3342–3350.

    CAS  Google Scholar 

  29. Losio, S.; Boccia, A. C.; Boggioni, L.; Sacchi, M. C.; Ferro, D. R. Ethene/4-methyl-1-pentene copolymers by metallocene-based catalysts: Exhaustive microstructural characterization by 13C NMR spectroscopy. Macromolecules2009, 42, 6964–6971.

    CAS  Google Scholar 

  30. Losio, S.; Forlini, F.; Boccia, A. C.; Sacchi, M. C. Propene/4-methyl-1-pentene copolymers by metallocene-based catalysts: First insight into 13C-NMR assignment. Macromolecules2011, 44, 3276–3286.

    CAS  Google Scholar 

  31. Tritto, I.; Boggioni, L.; Zampa, C.; Ferro, D. R. Ethylene-norbornene copolymers by Cs-symmetric metallocenes: Determination of the copolymerization parameters and mechanistic considerations on the basis of tetrad analysis. Macromolecules2005, 38, 9910–9919.

    CAS  Google Scholar 

  32. Boggioni, L.; Ravasio, A.; Boccia, A. C.; Ferro, D. R.; Tritto, I. Propene-norbornene copolymers toward a description of microstructure at triad level based on assignments of 13C-NMR spectra. Macromolecules2010, 43, 4543–4556.

    CAS  Google Scholar 

  33. Harakawa, H.; Patamma, S.; Boccia, A. C.; Boggioni, L.; Ferro, D. R.; Losio, S.; Nomura, K.; Tritto, I. Ethylene copolymerization with 4-methylcyclohexene or 1-methylcyclopentene by half-titanocene catalysts: Effect of ligands and microstructural analysis of the copolymers. Macromolecules2018, 51, 853–863.

    CAS  Google Scholar 

  34. Carman, C. J.; Wilkes, C. E. Monomer sequence distribution in ethylene propylene elastomers I. Measurement by carbon-13 nuclear magnetic resonance spectroscopy. Rubber Chem. Technol.1971, 44, 781–804.

    CAS  Google Scholar 

  35. Dorman, D. E.; Otocka, E. P.; Bovey, F. A. Carbon-13 observations of the nature of the short-chain branches in low-density polyethylene. Macromolecules1972, 5, 574–577.

    CAS  Google Scholar 

  36. Randall, J. C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterizations of ethylene-based polymers. J. Macromol. Sci., Rev. Macromol. Chem. Phys.1989, C29(2&3), 201.

    CAS  Google Scholar 

  37. Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T. Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared with ô-titanium trichloridediethylaluminum chloride. Macromolecules1982, 15, 1150–1152.

    CAS  Google Scholar 

  38. Ray, G. J.; Johnson, P. E.; Knox, J. R. Carbon-13 nuclear magnetic resonance determination of monomer composition and sequence distributions in ethylene-propylene copolymers prepared with a stereoregular catalyst system. Macromolecules1977, 10, 773–778.

    CAS  Google Scholar 

  39. Galimberti, M.; Piemontesi, F.; Mascellani, N.; Camurati, I.; Fusco, O.; Destro, M. Metallocenes for ethene/propene copolymerizations with high product of reactivity ratios. Macromolecules1999, 32, 7968–7976.

    CAS  Google Scholar 

  40. Lehmus, P.; Kokko, E.; Leino, R.; Luttikhedde, H. J. G.; Rieger, B.; Seppala, J. V. Chain end isomerization as a side reaction in metallocene-catalyzed ethylene and propylene polymerizations. Macromolecules2000, 33, 8534–8540.

    CAS  Google Scholar 

  41. Lehmus, P.; Kokko, E.; Ha1rkki, O.; Leino, R.; Luttikhedde, H. J. G.; Nasman, J. H.; Seppala, J. V. Homo- and copolymerization of ethylene and α-olefins over 1- and 2-siloxy-substituted ethylenebis(indenyl)zirconium and ethylenebis-(tetrahydroindenyl)-zirconium dichlorides. Macromolecules1999, 32, 3547–3552.

    CAS  Google Scholar 

  42. Tritto, I.; Boggioni, L.; Ferro, D. R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: Mechanisms from a detailed microstructural analysis. Coord. Chem. Rev.2006, 250, 212–241.

    CAS  Google Scholar 

  43. Resconi, L.; Camurati, I.; Sudmeijer, O. Chain transfer reactions in propylene polymerization with zirconocene catalysts. Topics in Catalysis1999, 7, 145–163.

    CAS  Google Scholar 

  44. Kawahara, N.; Kojoh, S.; Toda, Y.; Mizuno, A.; Kashiwa, N. The detailed analysis of the vinylidene structure of metallocenecatalyzed polypropylene. Polymer2004, 45, 355–357.

    CAS  Google Scholar 

  45. Quevedo-Sanchez, B.; Henson, M. A.; Coughlin, E. B. Origin of the formation of the 4-butenyl end group in zirconocene-catalyzed propylene polymerization. J. Polym. Sci., Part A: Polym. Chem.2006, 44, 3724–3728.

    CAS  Google Scholar 

  46. Resconi, L. On the mechanisms of growing-chain-end isomerization and transfer reactions in propylene polymerization with isospecific, C2-symmetric zirconocene catalysts. J. Mol. Catal. A: Chem.1999, 146, 167–178.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Total. We thank G. Zannoni and D. Piovani (ISMAC) for their valuable cooperation in NMR and SEC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Incoronata Tritto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losio, S., Boggioni, L., Cornelio, M. et al. Ethylene-Propene Copolymerization with C1-symmetric ansa-Fluorenyl-zirconocene Catalysts: Effects of Catalyst Structure and Comonomer on Molar Mass. Chin J Polym Sci 38, 220–230 (2020). https://doi.org/10.1007/s10118-020-2348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2348-3

Keywords

Navigation