Skip to main content
Log in

Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes are one of the candidates for the reinforcement of metals for numerous applications. In this study, the effect of CNT on the primary radiation damage of CNT-Cu nanocomposite was investigated using molecular dynamics simulations. The simulations were performed by considering primary knock-on atom with 3 and 6 keV kinetic energies in the radial velocity direction (perpendicular to the cylinder axis) at various distances from the armchair CNT with (28, 28) chirality. Equivalent simulations in the single copper crystal and crystal containing cylindrical nanovoid (“CNV”) were performed for comparison. The results represent an improvement in radiation tolerance of copper composed with CNT nanofiller. In this material, CNT not only plays a sink role for point defects, but also it acts as a barrier to extend the displacement cascade. Some fluctuations in the number of the bulk vacancy around CNT-Cu interface were observed. The reason for this behavior was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chawla N, Shen Y-L (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3:357–370. https://doi.org/10.1002/1527-2648(200106)3:6%3c357:AID-ADEM357%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  2. Prakash D, Amente C, Dharamvir K et al (2016) Synthesis, purification and microstructural characterization of nickel doped carbon nanotubes for spintronic applications. Ceram Int 42:5600–5606. https://doi.org/10.1016/j.ceramint.2015.11.074

    Article  CAS  Google Scholar 

  3. Tony VCS, Voon CH, Lee CC et al (2017) Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube. Mater Res 20:1658–1668. https://doi.org/10.1590/1980-5373-MR-2017-0277

    Article  CAS  Google Scholar 

  4. Song H-Y, Zha X-W (2010) Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites. Comput Mater Sci 49:899–903. https://doi.org/10.1016/J.COMMATSCI.2010.06.044

    Article  CAS  Google Scholar 

  5. Tsai P-C, Jeng Y-R (2013) Experimental and numerical investigation into the effect of carbon nanotube buckling on the reinforcement of CNT/Cu composites. Compos Sci Technol 79:28–34. https://doi.org/10.1016/J.COMPSCITECH.2013.02.003

    Article  CAS  Google Scholar 

  6. Agarwal A, Bakshi SR, Lahiri D et al (2016) Carbon nanotubes. CRC Press, Boca Raton

    Book  Google Scholar 

  7. Sharma S, Kumar P, Chandra R (2017) Mechanical and thermal properties of graphene–carbon nanotube-reinforced metal matrix composites: a molecular dynamics study. J Compos Mater 51:3299–3313. https://doi.org/10.1177/0021998316682363

    Article  CAS  Google Scholar 

  8. Kim KT, Eckert J, Liu G et al (2011) Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr Mater 64:181–184. https://doi.org/10.1016/J.SCRIPTAMAT.2010.09.039

    Article  CAS  Google Scholar 

  9. Chen S, Miyahara Y, Nomoto A, Nishida K (2019) Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels. Acta Mater 179:61–69. https://doi.org/10.1016/j.actamat.2019.08.029

    Article  CAS  Google Scholar 

  10. Wu Y (2019) Material neutron irradiation damage. In: Wu Y (ed) Neutronics of advanced nuclear systems. Springer, Singapore, pp 161–180

    Chapter  Google Scholar 

  11. Zhang J, Liu W, Chen P et al (2019) Molecular dynamics study of the interaction between symmetric tilt Σ5(2 1 0) 〈0 0 1〉 grain boundary and radiation-induced point defects in Fe-9Cr alloy. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 451:99–103. https://doi.org/10.1016/J.NIMB.2019.05.014

    Article  CAS  Google Scholar 

  12. Arjhangmehr A, Feghhi SAH, Esfandiyarpour A, Hatami F (2016) An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel. J Mater Sci 51:1017–1031. https://doi.org/10.1007/s10853-015-9432-z

    Article  CAS  Google Scholar 

  13. Esfandiarpour A, Feghhi SAH, Arjhangmehr A (2016) Atomistic investigation of Cr influence on primary radiation damage in Fe-12 at% Cr grain boundaries. Model Simul Mater Sci Eng 24:065008. https://doi.org/10.1088/0965-0393/24/6/065008

    Article  CAS  Google Scholar 

  14. Li B, Li H-Y, Luo S-N (2018) Molecular dynamics simulations of displacement cascades in nanotwinned Cu. Comput Mater Sci 152:38–42. https://doi.org/10.1016/J.COMMATSCI.2018.04.055

    Article  CAS  Google Scholar 

  15. Hosseini A, Nasrabadi MN, Esfandiarpour A (2019) Investigation of primary radiation damage near free surfaces in iron nanofoam with a model cylindrical nanovoids structure. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 439:43–50. https://doi.org/10.1016/J.NIMB.2018.11.001

    Article  CAS  Google Scholar 

  16. Li X, Liu W, Xu Y et al (2016) Radiation resistance of nano-crystalline iron: coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries. Acta Mater 109:115–127. https://doi.org/10.1016/j.actamat.2016.02.028

    Article  CAS  Google Scholar 

  17. Barr CM, Li N, Boyce BL, Hattar K (2018) Examining the influence of grain size on radiation tolerance in the nanocrystalline regime. Appl Phys Lett. https://doi.org/10.1063/1.5016822

    Article  Google Scholar 

  18. Huang H, Tang X, Chen F et al (2018) Radiation tolerance of nickel–graphene nanocomposite with disordered graphene. J Nucl Mater 510:1–9. https://doi.org/10.1016/J.JNUCMAT.2018.07.051

    Article  CAS  Google Scholar 

  19. Huang H, Tang X, Chen F et al (2015) Radiation damage resistance and interface stability of copper–graphene nanolayered composite. J Nucl Mater 460:16–22. https://doi.org/10.1016/J.JNUCMAT.2015.02.003

    Article  CAS  Google Scholar 

  20. Liu S, Xie L, Peng Q, Li R (2019) Carbon nanotubes enhance the radiation resistance of bcc Iron revealed by atomistic study. Materials (Basel). https://doi.org/10.3390/ma12020217

    Article  Google Scholar 

  21. So KP, Chen D, Kushima A et al (2016) Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy 22:319–327. https://doi.org/10.1016/J.NANOEN.2016.01.019

    Article  CAS  Google Scholar 

  22. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/JCPH.1995.1039

    Article  CAS  Google Scholar 

  23. Wu X, Zhao H, Zhong M et al (2014) Molecular dynamics simulation of graphene sheets joining under ion beam irradiation. Carbon N Y 66:31–38. https://doi.org/10.1016/J.CARBON.2013.08.027

    Article  CAS  Google Scholar 

  24. Mao R, Kong BD, Gong C et al (2013) First-principles calculation of thermal transport in metal/graphene systems. Phys Rev B 87:165410. https://doi.org/10.1103/PhysRevB.87.165410

    Article  CAS  Google Scholar 

  25. Osetsky YN, Calder AF, Stoller RE (2015) How do energetic ions damage metallic surfaces? Curr Opin Solid State Mater Sci 19:277–286. https://doi.org/10.1016/J.COSSMS.2014.12.001

    Article  CAS  Google Scholar 

  26. Nordlund K, Keinonen J, Ghaly M, Averback RS (1999) Recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV–50 keV ion bombardment. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 148:74–82. https://doi.org/10.1016/S0168-583X(98)00819-2

    Article  CAS  Google Scholar 

  27. Ghaly M, Nordlund K, Averback RS (1999) Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos Mag A 79:795–820. https://doi.org/10.1080/01418619908210332

    Article  CAS  Google Scholar 

  28. Aliaga MJ, Schäublin R, Löffler JF, Caturla MJ (2015) Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films. Acta Mater 101:22–30. https://doi.org/10.1016/J.ACTAMAT.2015.08.063

    Article  CAS  Google Scholar 

  29. Nordlund K, Keinonen J, Ghaly M, Averback RS (1999) Coherent displacement of atoms during ion irradiation. Nature 398:49–51. https://doi.org/10.1038/17983

    Article  CAS  Google Scholar 

  30. Korchuganov AV, Zolnikov KP, Kryzhevich DS et al (2015) Generation of shock waves in iron under irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 352:39–42. https://doi.org/10.1016/J.NIMB.2014.11.095

    Article  CAS  Google Scholar 

  31. Javeed S, Zeeshan S, Ahmad S (2013) Dynamics of fragmentation and multiple vacancy generation in irradiated single-walled carbon nanotubes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 295:22–29. https://doi.org/10.1016/J.NIMB.2012.10.012

    Article  CAS  Google Scholar 

  32. Denton CD, Moreno-Marín JC, Heredia-Avalos S (2015) Energy distribution of the particles obtained after irradiation of carbon nanotubes with carbon projectiles. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 352:221–224. https://doi.org/10.1016/J.NIMB.2014.11.099

    Article  CAS  Google Scholar 

  33. Li H, Tang X, Chen F et al (2016) Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 378:31–37. https://doi.org/10.1016/J.NIMB.2016.04.043

    Article  CAS  Google Scholar 

  34. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Nasrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Nasrabadi, M.N. & Esfandiarpour, A. Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation. J Mater Sci 55, 4311–4320 (2020). https://doi.org/10.1007/s10853-019-04309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04309-7

Navigation