Skip to main content

Advertisement

Log in

NLRC5: new cancer buster?

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent decades, there is significant progress in understanding the mechanisms of tumor progression and immune evasion. The newly discovered protein NLRC5 is demonstrated to participate in regulating cancer immune escape through enhancing MHC class I genes expression in certain tumors. Nevertheless, increasing evidence has revealed that NLRC5 is up-regulated in some other tumors and promote tumor development and progression. The purpose of this review is to describe the role of NLRC5 in tumors and discuss whether NLRC5 can be a potential target in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NLRC5:

NLR caspase recruitment domain containing protein 5

NLRs:

Nucleotide-binding oligomerization domain-like receptors

CARD:

Caspase activation and recruitment domain

LRR:

Leucine-rich repeat

NACHT:

Present in NAIP, CIITA, HET-E, and TP1proteins

STAT1:

Signal transducer and activator of transcription 1

MHC:

Major histocompatibility complex

TCGA:

The Cancer Genome Atlas

5-Aza:

5-Azacitidine

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

PRAD:

Prostate adenocarcinoma

SKCM:

Skin cutaneous melanoma

THCA:

Thyroid carcinoma

THYM:

Thymoma

UCEC:

Uterine corpus endometrial carcinoma

UCS:

Uterine carcinosarcoma

ESCA:

Esophageal carcinoma

GBM:

Glioblastoma multiforme

HNSC:

Head and neck squamous cell carcinoma

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

LAML:

Acute myeloid leukemia

PAAD:

Pancreatic adenocarcinoma

STAD:

Stomach adenocarcinoma

TGCT:

Testicular germ cell tumors

LPS:

Lipopolysaccharide

HLA:

Human leukocyte antigen

β2M:

β2-Microglobulin

TAP:

Antigen processing transporter

ER:

Endoplasmic reticulum

CITA:

MHC class I transactivator

References

  1. Adlung L, Kar S, Wagner MC et al (2017) Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol Syst Biol 13:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  3. Ruland J (2011) Return to homeostasis: downregulation of NF-κB responses. Nat Immunol 12:709–714

    Article  CAS  PubMed  Google Scholar 

  4. Velloso F J, Trombetta-Lima M, Anschau V et al (2019) NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci Rep 39(4):BSR20181709.

  5. Moossavi M, Parsamanesh N, Bahrami A et al (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tong Y, Cui J, Li Q et al (2012) Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res 22:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshihama S, Roszik J, Downs I et al (2016) NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci 113:5999–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Q, Ding H, He Y et al (2019) NLRC5 mediates cell proliferation, migration, and invasion by regulating the Wnt/beta-catenin signalling pathway in clear cell renal cell carcinoma. Cancer Lett 444:9–19

    Article  CAS  PubMed  Google Scholar 

  9. Peng Y, He Y, Chen C et al (2016) NLRC5 regulates cell proliferation, migration and invasion in hepatocellular carcinoma by targeting the Wnt/β-catenin signaling pathway. Cancer Lett 376:10–21

    Article  CAS  PubMed  Google Scholar 

  10. Yao Y, Qian Y (2013) Expression regulation and function of NLRC5. Protein Cell 4:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meissner TB, Li A, Biswas A et al (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 107:13794–13799

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benko S, Magalhaes JG, Philpott DJ et al (2010) NLRC5 limits the activation of inflammatory pathways. J Immunol 185:1681–1691

    Article  CAS  Google Scholar 

  13. Kanneganti TD, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    Article  CAS  PubMed  Google Scholar 

  14. Lamkanfi M, Kanneganti T-D (2012) Regulation of immune pathways by the NOD-like receptor NLRC5. Immunobiology 217:13–16

    Article  CAS  PubMed  Google Scholar 

  15. Meissner TB, Li A, Liu YJ et al (2012) The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 418:786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andreas N, Galaxia MR, Viktor S (2012) NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J Immunol 188:4940–4950

    Article  CAS  Google Scholar 

  17. Neerincx A, Lautz K, Menning M et al (2010) A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J Biol Chem 285:26223–26232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Staehli F, Ludigs K, Heinz LX et al (2012) NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J Immunol 188:3820–3828

    Article  CAS  PubMed  Google Scholar 

  19. Cui J, Zhu L, Xia X et al (2010) NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esteller M (2006) Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94:179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  22. Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine. J Biol Chem 257:2041–2048

    CAS  PubMed  Google Scholar 

  23. Leonhardt H, Page AW, Weier HU et al (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Zhang M, Zheng X (2018) High Expression of NLRC5 is associated with prognosis of gastric cancer. Open Med 13:443–449

    Article  CAS  Google Scholar 

  25. Li X, Guo F, Liu Y et al (2015) NLRC5 expression in tumors and its role as a negative prognostic indicator in stage III non-small-cell lung cancer patients. Oncol Lett 10:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He Y, Li M, Zhang X et al (2016) NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma. Toxicology 359–360:47–57

    Article  CAS  PubMed  Google Scholar 

  27. Liu R, Truax AD, Chen L et al (2015) Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget 6:33456–33469

    PubMed  PubMed Central  Google Scholar 

  28. Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nonaka MI, Aizawa K, Mitani H et al (2011) Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol Biol Evol 28:3099–3112

    Article  CAS  PubMed  Google Scholar 

  30. Braud VM, Allan DS, McMichael AJ (1999) Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 11:100–108

    Article  CAS  PubMed  Google Scholar 

  31. Johnston-Carey HK, Pomatto LC, Davies KJ (2015) The Immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol 51:268–281

    Article  CAS  PubMed  Google Scholar 

  32. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peaper D, Cresswell P (2008) Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 24:343–368

    Article  CAS  PubMed  Google Scholar 

  34. Shastri N, Cardinaud S, Schwab SR et al (2005) All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev 207:31–41

    Article  CAS  PubMed  Google Scholar 

  35. Ludigs K, Seguín-Estévez Q, Lemeille S et al (2015) NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet 11:e1005088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ting JP, Baldwin AS (1993) Regulation of MHC gene expression. Curr Opin Immunol 5:8–16

    Article  CAS  PubMed  Google Scholar 

  37. Bukur J, Jasinski S, Seliger B (2012) The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 22:350–358

    Article  CAS  PubMed  Google Scholar 

  38. Yoshihama S, Vijayan S, Sidiq T et al (2017) NLRC5/CITA: a key player in cancer immune surveillance. Trends Cancer 3:28–38

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garrido F, Aptsiauri N, Doorduijn EM et al (2016) The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 39:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seliger B (2012) Novel insights into the molecular mechanisms of HLA class I abnormalities. Cancer Immunol Immunother 61:249–254

    Article  CAS  PubMed  Google Scholar 

  41. Angell TE, Lechner MG, Jang JK et al (2014) MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res 20:6034–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siddle HV, Kreiss A, Tovar C et al (2013) Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc Natl Acad Sci USA 110:5103–5108

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez GM, Bobbala D, Serrano D et al (2016) NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes. Oncoimmunology 5:e1151593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma HL, Zhao XF, Chen GZ et al (2016) Silencing NLRC5 inhibits extracellular matrix expression in keloid fibroblasts via inhibition of transforming growth factor-beta1/Smad signaling pathway. Biomed Pharmacother 83:1016–1021

    Article  CAS  PubMed  Google Scholar 

  45. Akhurst RJ, Hata A (2012) Targeting the TGFβ signalling pathway in disease. Nature reviews. Drug Discov 11:790–811

    Article  CAS  Google Scholar 

  46. Fernández JG, Rodríguez DA, Valenzuela M et al (2014) Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol Cancer 13:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zong Z, Song Y, Xue Y et al (2019) Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR-499a-5p/LMX1A/NLRC5 pathway. J Cell Mol Med 23:5048–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park WS, Oh RR, Park JY et al (1999) Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Can Res 59:4257–4260

    CAS  Google Scholar 

  49. Kumar H, Pandey S, Zou J et al (2011) NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 186:994–1000

    Article  CAS  PubMed  Google Scholar 

  50. Ranjan P, Singh N, Kumar A et al (2015) NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection. Eur J Immunol 45:758–772

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Yu L, Shen Z et al (2016) miR-34a and its novel target, NLRC5, are associated with HPV16 persistence. Infect Genet Evol 44:293–299

    Article  CAS  PubMed  Google Scholar 

  52. Periyasamy P, Thangaraj A, Bendi VS et al (2019) HIV-1 Tat-mediated microglial inflammation involves a novel miRNA-34a-NLRC5-NFκB signaling axis. Brain Behav Immun 80:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu T, Ni MM, Huang C et al (2015) NLRC5 mediates IL-6 and IL-1β secretion in LX-2 cells and modulated by the NF-κB/Smad3 pathway. Inflammation 38:1794–1804

    Article  CAS  PubMed  Google Scholar 

  54. Zhang YZ, Yao JN, Zhang LF et al (2019) Effect of NLRC5 on activation and reversion of hepatic stellate cells by regulating the nuclear factor-κB signaling pathway. World J Gastroenterol 25:3044–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robbins GR, Truax AD, Davis BK et al (2012) Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 287:24294–24303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ludigs K, Jandus C, Utzschneider DT et al (2016) NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun 7:10554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas L (1982) On immunosurveillance in human cancer. Yale J Biol Med 55:329–333

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  59. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 3:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  61. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27:1492–1504

    Article  CAS  PubMed  Google Scholar 

  62. Chae YK, Arya A, Iams W et al (2018) Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mahoney KM, Freeman GJ, McDermott DF (2015) The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 37:764–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Contardi E, Palmisano GL, Tazzari PL et al (2005) CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 117:538–550

    Article  CAS  PubMed  Google Scholar 

  65. Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  66. Kuenzel S, Till A, Winkler M et al (2010) The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J Immunol 184:1990–2000

    Article  CAS  PubMed  Google Scholar 

  67. Meng Q, Cai C, Sun T et al (2015) Reversible ubiquitination shapes NLRC5 function and modulates NF-κB activation switch. J Cell Biol 211:1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. White BD, Chien AJ, Dawson DW (2012) Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219–232

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbluh J, Wang X, Hahn WC (2014) Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci 35:103–109

    Article  CAS  PubMed  Google Scholar 

  70. Yan M, Li G, An J (2017) Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med 242:1185–1197

    Article  CAS  Google Scholar 

  71. Lu D, Choi MY, Yu J et al (2011) Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci USA 108:13253–13257

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kopp F, Hermawan A, Oak PS et al (2014) Salinomycin treatment reduces metastatic tumor burden by hampering cancer cell migration. Mol Cancer 13:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qin LS, Jia PF, Zhang ZQ et al (2015) ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. J Exp Clin Cancer Res 34:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li T, Su L, Zhong N et al (2013) Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 9:1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He L, Lu N, Dai Q et al (2013) Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology 312:36–47

    Article  CAS  PubMed  Google Scholar 

  76. Yang L, Zhang HW, Hu R et al (2009) Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol 87:933–942

    Article  CAS  PubMed  Google Scholar 

  77. Wickström M, Dyberg C, Milosevic J et al (2015) Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun 6:8904

    Article  CAS  PubMed  Google Scholar 

  78. Markowski MC, Boorjian SA, Burton JP et al (2019) The microbiome and genitourinary cancer: a collaborative review. Eur Urol 75:637–646

    Article  PubMed  Google Scholar 

  79. Snijders PJ, Verhoef VM, Arbyn M et al (2013) High-risk HPV testing on self-sampled versus clinician-collected specimens: a review on the clinical accuracy and impact on population attendance in cervical cancer screening. Int J Cancer 132:2223–2236

    Article  CAS  PubMed  Google Scholar 

  80. Ogino S, Chan AT, Fuchs CS et al (2011) Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60:397–411

    Article  PubMed  Google Scholar 

  81. Ogino S, Nowak JA, Hamada T et al (2019) Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Ann Rev Pathol 14:83–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the Second Affiliated Hospital of Anhui Medical University.

Funding

This study was funded by the National Natural Science Foundation of China (No. 81072066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Tang or Bing Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. Feng Tang and Yadi Xu are joint first authors. Zhao Bing and Feng Tang are joint corresponding authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Xu, Y. & Zhao, B. NLRC5: new cancer buster?. Mol Biol Rep 47, 2265–2277 (2020). https://doi.org/10.1007/s11033-020-05253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05253-5

Keywords

Navigation