Skip to main content

Advertisement

Log in

Radiomics of hepatocellular carcinoma

  • Special Section: Liver Transplantation
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial distribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Hectors et al. [69]

Similar content being viewed by others

References

  1. Ryerson, A.B., et al., Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer, 2016. 122(9): p. 1312-37.

    Article  PubMed  Google Scholar 

  2. Cartier, V. and C. Aube, Diagnosis of hepatocellular carcinoma. Diagn Interv Imaging, 2014. 95(7-8): p. 709-19.

    Article  CAS  PubMed  Google Scholar 

  3. Llovet, J.M., et al., Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol, 2015. 12(8): p. 436

    Article  PubMed  Google Scholar 

  4. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.

    Article  CAS  PubMed  Google Scholar 

  5. Bteich, F. and A.M. Di Bisceglie, Current and Future Systemic Therapies for Hepatocellular Carcinoma. Gastroenterol Hepatol (N Y), 2019. 15(5): p. 266-272.

    Google Scholar 

  6. Villanueva, A., et al., New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res, 2010. 16(19): p. 4688-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khemlina, G., S. Ikeda, and R. Kurzrock, The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer, 2017. 16(1): p. 149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kurebayashi, Y., et al., Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018. 68(3): p. 1025-1041.

    Article  CAS  PubMed  Google Scholar 

  9. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.

    PubMed  Google Scholar 

  10. Yip, S.S. and H.J. Aerts, Applications and limitations of radiomics. Phys Med Biol, 2016. 61(13): p. R150-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambin, P., et al., Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017. 14(12): p. 749-762.

    Article  PubMed  Google Scholar 

  12. Nougaret, S., et al., Radiomics: an Introductory Guide to What It May Foretell. Curr Oncol Rep, 2019. 21(8): p. 70.

    Article  PubMed  Google Scholar 

  13. Zwanenburg, A., et al., Imaging biomarker standardisation initiative. arXiv, 2016. 1612.07003.

    Google Scholar 

  14. Shan, Q.Y., et al., CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging, 2019. 19(1): p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahn, S.J., et al., Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis. Abdom Radiol (NY), 2019. 44(2): p. 539-548.

    Article  Google Scholar 

  16. Kim, S., et al., Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res, 2019. 25(13): p. 3847-3855.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, F., et al., Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol, 2018. 7(3): p. 445-458.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Just, N., Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer, 2014. 111(12): p. 2205-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haralick RM, S.K., Dinstein I, Textural Features for Image Classification. IEEE Trans SystMan Cybern SMC, 1973. 3: p. 610-621.

  20. Davnall, F., et al., Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 2012. 3(6): p. 573-89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parekh, V. and M.A. Jacobs, Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev, 2016. 1(2): p. 207-226.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rizzo, S., et al., Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp, 2018. 2(1): p. 36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parmar, C., et al., Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep, 2015. 5: p. 13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varghese, B.A., et al., Texture Analysis of Imaging: What Radiologists Need to Know. AJR Am J Roentgenol, 2019. 212(3): p. 520-528.

    Article  PubMed  Google Scholar 

  25. Dobbin, K.K. and R.M. Simon, Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genomics, 2011. 4: p. 31.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fransvea, E., et al., HCC heterogeneity: molecular pathogenesis and clinical implications. Cell Oncol, 2009. 31(3): p. 227-33.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Friemel, J., et al., Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res, 2015. 21(8): p. 1951-61.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, D.C., et al., Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer Res, 2017. 77(9): p. 2255-2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, S. and Y. Hoshida, Molecular heterogeneity in hepatocellular carcinoma. Hepat Oncol, 2018. 5(1): p. HEP10.

  30. Goossens, N., X. Sun, and Y. Hoshida, Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol, 2015. 2(4): p. 371-379.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoshida, Y., et al., Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res, 2009. 69(18): p. 7385-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sia, D., et al., Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology, 2017. 153(3): p. 812-826.

    CAS  PubMed  Google Scholar 

  33. Liu, J., H. Dang, and X.W. Wang, The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med, 2018. 50(1): p. e416.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Martins-Filho, S.N., et al., Histological Grading of Hepatocellular Carcinoma-A Systematic Review of Literature. Front Med (Lausanne), 2017. 4: p. 193.

    Article  Google Scholar 

  35. Moriya, T., et al., 3D analysis of apparent diffusion coefficient histograms in hepatocellular carcinoma: correlation with histological grade. Cancer Imaging, 2017. 17(1): p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu, Y.S., et al., Whole-lesion histogram analysis metrics of the apparent diffusion coefficient: a correlation study with histological grade of hepatocellular carcinoma. Abdom Radiol (NY), 2019. 44(9): p. 3089-3098.

    Article  Google Scholar 

  37. Wu, M., et al., Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol, 2019. 29(6): p. 2802-2811.

    Article  PubMed  Google Scholar 

  38. Zhou, W., et al., Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging, 2017. 45(5): p. 1476-1484.

    Article  PubMed  Google Scholar 

  39. Oh, J., et al., Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival. Korean J Radiol, 2019. 20(4): p. 569-579.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gouw, A.S., et al., Markers for microvascular invasion in hepatocellular carcinoma: where do we stand? Liver Transpl, 2011. 17 Suppl 2: p. S72-80.

    Article  PubMed  Google Scholar 

  41. Roayaie, S., et al., A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology, 2009. 137(3): p. 850-5.

    Article  PubMed  Google Scholar 

  42. Lim, K.C., et al., Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg, 2011. 254(1): p. 108-13.

    Article  PubMed  Google Scholar 

  43. Mazzaferro, V., et al., Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol, 2009. 10(1): p. 35-43.

    Article  PubMed  Google Scholar 

  44. Banerjee, S., et al., A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology, 2015. 62(3): p. 792-800.

    Article  PubMed  Google Scholar 

  45. Renzulli, M., et al., Can Current Preoperative Imaging Be Used to Detect Microvascular Invasion of Hepatocellular Carcinoma? Radiology, 2016. 279(2): p. 432-42.

    Article  PubMed  Google Scholar 

  46. Peng, J., et al., A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagn Interv Radiol, 2018. 24(3): p. 121-127.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma, X., et al., Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 2019. 29(7): p. 3595-3605.

    Article  PubMed  Google Scholar 

  48. Bakr, S., et al., Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham), 2017. 4(4): p. 041303.

    Google Scholar 

  49. Xu, X., et al., Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019. 70(6): p. 1133-1144.

    Article  PubMed  Google Scholar 

  50. Zheng, B.H., et al., Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer, 2018. 18(1): p. 1148.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhu, Y.J., et al., Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Oncol Lett, 2019. 18(1): p. 720-732.

    PubMed  PubMed Central  Google Scholar 

  52. Huang, Y.Q., et al., Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma. Medicine (Baltimore), 2016. 95(26): p. e4034.

    Article  Google Scholar 

  53. Li, H., et al., Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma. Eur J Radiol, 2018. 105: p. 65-71.

    Article  PubMed  Google Scholar 

  54. Hu, H.T., et al., Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma. Eur Radiol, 2019. 29(6): p. 2890-2901.

    Article  PubMed  Google Scholar 

  55. Luo, Y., et al., Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med, 2015. 8(7): p. 10235-47.

    PubMed  PubMed Central  Google Scholar 

  56. Hu, X.X., et al., Whole-tumor MRI histogram analyses of hepatocellular carcinoma: Correlations with Ki-67 labeling index. J Magn Reson Imaging, 2017. 46(2): p. 383-392.

    Article  PubMed  Google Scholar 

  57. Li, Y., et al., Texture analysis of multi-phase MRI images to detect expression of Ki67 in hepatocellular carcinoma. Clin Radiol, 2019.

  58. Kim, H., et al., Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology, 2011. 54(5): p. 1707-17.

    Article  CAS  PubMed  Google Scholar 

  59. Tsuchiya, K., et al., Expression of keratin 19 is related to high recurrence of hepatocellular carcinoma after radiofrequency ablation. Oncology, 2011. 80(3-4): p. 278-88.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, H.Q., et al., Magnetic resonance texture analysis for the identification of cytokeratin 19-positive hepatocellular carcinoma. Eur J Radiol, 2019. 117: p. 164-170.

    Article  PubMed  Google Scholar 

  61. Yao, Z., et al., Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer, 2018. 18(1): p. 1089.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cariani, E., et al., Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One, 2012. 7(3): p. e32493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Segal, E., et al., Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 2007. 25(6): p. 675-80.

    Article  CAS  PubMed  Google Scholar 

  64. Furlan, A., et al., A radiogenomic analysis of hepatocellular carcinoma: association between fractional allelic imbalance rate index and the liver imaging reporting and data system (LI-RADS) categories and features. Br J Radiol, 2018. 91(1086): p. 20170962.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Taouli, B., et al., Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol, 2017. 27(11): p. 4472-4481.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gyorffy, B., et al., Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene, 2005. 24(51): p. 7542-51.

    Article  PubMed  CAS  Google Scholar 

  67. Kuo, M.D., et al., Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol, 2007. 18(7): p. 821-31.

    Article  PubMed  Google Scholar 

  68. Xia, W., et al., Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol, 2018. 63(3): p. 035044.

    Article  PubMed  CAS  Google Scholar 

  69. Hectors, S.J., et al., Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep, 2017. 7(1): p. 2452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chen, S., et al., Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol, 2019. 29(8): p. 4177-4187.

    Article  PubMed  Google Scholar 

  71. Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.

    Article  PubMed  Google Scholar 

  72. Kim, J., et al., Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol, 2018. 211(5): p. 1026-1034.

    Article  PubMed  Google Scholar 

  73. Kloth, C., et al., Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT. Acad Radiol, 2017. 24(11): p. 1352-1363.

    Article  PubMed  Google Scholar 

  74. Park, H.J., et al., Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol, 2017. 209(4): p. W211-W220.

    Article  PubMed  Google Scholar 

  75. Reis, S.P., et al., Tumor Enhancement and Heterogeneity Are Associated With Treatment Response to Drug-Eluting Bead Chemoembolization for Hepatocellular Carcinoma. J Comput Assist Tomogr, 2017. 41(2): p. 289-293.

    Article  PubMed  Google Scholar 

  76. Yu, J.Y., et al., Value of texture analysis based on enhanced MRI for predicting an early therapeutic response to transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound treatment in hepatocellular carcinoma. Clin Radiol, 2018. 73(8): p. 758 e9-758 e18.

  77. Wu, L.F., et al., Pre-TACE kurtosis of ADCtotal derived from histogram analysis for diffusion-weighted imaging is the best independent predictor of prognosis in hepatocellular carcinoma. Eur Radiol, 2019. 29(1): p. 213-223.

    Article  PubMed  Google Scholar 

  78. Gordic, S., et al., Prediction of hepatocellular carcinoma response to (90)Yttrium radioembolization using volumetric ADC histogram quantification: preliminary results. Cancer Imaging, 2019. 19(1): p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Reiner, C.S., et al., Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment. Cardiovasc Intervent Radiol, 2016. 39(3): p. 400-8.

    Article  PubMed  Google Scholar 

  80. Riaz, A., et al., Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology, 2009. 49(4): p. 1185-93.

    Article  PubMed  Google Scholar 

  81. Blanc-Durand, P., et al., Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget, 2018. 9(4): p. 4549-4558.

    Article  PubMed  Google Scholar 

  82. Ma, X., et al., Histogram analysis of apparent diffusion coefficient predicts response to radiofrequency ablation in hepatocellular carcinoma. Chin J Cancer Res, 2019. 31(2): p. 366-374.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yuan, C., et al., Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. Cancer Imaging, 2019. 19(1): p. 21.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cozzi, L., et al., Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer, 2017. 17(1): p. 829.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mule, S., et al., Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib. Radiology, 2018. 288(2): p. 445-455.

    Article  PubMed  Google Scholar 

  86. Shah, S.A., et al., Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery, 2007. 141(3): p. 330-9.

    Article  PubMed  Google Scholar 

  87. Guo, D., et al., Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J Radiol, 2019. 117: p. 33-40.

    Article  PubMed  Google Scholar 

  88. Hui, T.C.H., et al., Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study. Clin Radiol, 2018. 73(12): p. 1056 e11-1056 e16.

  89. Brenet Defour, L., et al., Hepatocellular carcinoma: CT texture analysis as a predictor of survival after surgical resection. Eur Radiol, 2019. 29(3): p. 1231-1239.

    Article  PubMed  Google Scholar 

  90. Chen, S., et al., Texture analysis of baseline multiphasic hepatic computed tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: A retrospective pilot study. Eur J Radiol, 2017. 90: p. 198-204.

    Article  PubMed  Google Scholar 

  91. Zhang, J., et al., Texture Analysis Based on Preoperative Magnetic Resonance Imaging (MRI) and Conventional MRI Features for Predicting the Early Recurrence of Single Hepatocellular Carcinoma after Hepatectomy. Acad Radiol, 2018.

  92. Zhang, W., et al., Prognostic value of preoperative computed tomography in HBV-related hepatocellular carcinoma patients after curative resection. Onco Targets Ther, 2019. 12: p. 3791-3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Akai, H., et al., Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging, 2018. 99(10): p. 643-651.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, Z., et al., Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction. Cancer Imaging, 2019. 19(1): p. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, Y., et al., CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY), 2017. 42(6): p. 1695-1704.

    Article  Google Scholar 

  96. Braman, N.M., et al., Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res, 2017. 19(1): p. 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Prasanna, P., et al., Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol, 2017. 27(10): p. 4188-4197.

    Article  PubMed  Google Scholar 

  98. Shafiq-Ul-Hassan, M., et al., Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys, 2017. 44(3): p. 1050-1062.

    Article  CAS  PubMed  Google Scholar 

  99. Traverso, A., et al., Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys, 2018. 102(4): p. 1143-1158.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Qiu, Q., et al., Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg, 2019. 9(3): p. 453-464.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sala, E., et al., Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 2017. 72(1): p. 3-10.

    Article  CAS  PubMed  Google Scholar 

  102. Parekh, V.S. and M.A. Jacobs, Deep learning and radiomics in precision medicine. Expert Rev Precis Med Drug Dev, 2019. 4(2): p. 59-72.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Paul, R., et al., Towards deep radiomics: nodule malignancy prediction using CNNs on feature images. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosi, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Lewis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, S., Hectors, S. & Taouli, B. Radiomics of hepatocellular carcinoma. Abdom Radiol 46, 111–123 (2021). https://doi.org/10.1007/s00261-019-02378-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02378-5

Keywords

Navigation