Skip to main content
Log in

Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a series of Sr-substituted lanthanum orthoferrite perovskites, La1−xSrxFeO3 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0), were prepared using the sucrose-assisted auto-combustion route to study the effect of Sr-substitution on the structural, magnetic, and electrical properties and to investigate the impact of the entire method on different properties. The auto-combustion process and the perovskites formation were followed using differential thermal analysis–thermogravimetry techniques. The obtained different phases were characterized using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy HRTEM measurements. XRD revealed peaks attributed to SrCO3 secondary phase increases in their intensity by increasing Sr-content till predominate at x = 1.0. It also showed a transfer from orthorhombic symmetry to rhombohedral one by increasing Sr-content. The obvious contraction in the unit cell parameters by Sr-substitution could be attributed to the Fe3+  → Fe4+ oxidation occurred to balance the total charge on molecule. The obvious increase in the magnetization by increasing Sr could be attributed to the formation of Fe4+ ions, strengthening the ferromagnetic component through sharing in the double-exchange interaction, Fe4+–O–Fe3+, as well as the formation of oxygen vacancies that disturb the uncompensated surface spin. Ac-conductivity measurements indicated a change in the entire conduction mechanism from electronic to ionic with improving conductivity by increasing Sr-content. Generally, the utilized sucrose method indicated an improvement in the obtained magnetization accompanied by lowering conductivity than previously reported systems in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.P. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, Y. He, J. Appl. Biomater. Funct. Mater. 16, 93 (2018)

    CAS  Google Scholar 

  2. N. Ramadass, ABO3-type-oxides-their structure and properties: a bird’s eye view. Mater. Sci. Eng. 36, 231–239 (1978)

    CAS  Google Scholar 

  3. K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, CO2 Gas sensors based on La1xSrxFeO3 nanocrystalline powders. Sens. Actuators B 177, 265–269 (2013)

    CAS  Google Scholar 

  4. M. Noroozifar, M. Khorasani-Motlagh, M. Ekrami-Kakhki, Enhanced electrocatalytic properties of Pt–Chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J. Power. Sources. 248, 130–139 (2014)

    CAS  Google Scholar 

  5. Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of response to formaldehyde at Ag-LaFeO3 based gas sensors through incorporation of SWCNTs. Sens. Actuators B 195, 509–514 (2014)

    CAS  Google Scholar 

  6. S. Acharya, D.K. Padhi, K.M. Parida, Visible light driven LaFeO3 nano sphere/RGO compositephotocatalysts for efficient water decomposition reactions. Catal. Today. (2017). https://doi.org/10.1016/j.cattod.2017.01.001

    Article  Google Scholar 

  7. E.A. Nforna, J.N. Ghogomu, P.A. Joy, J.N. Lambi, Structure and magnetic properties of lanthanum strontium ferrites nanopowders synthesized by thermal decomposition of mixed metal acetyl acetonates. Int. J. Eng. Res. Technol. 4, 907–914 (2015)

    Google Scholar 

  8. J.P. Lin, Z.P. Guo, Q. Lin, Y.L. Wang, K.L. Huang, Y. He, Mater. Sci. 25, 135 (2019)

    Google Scholar 

  9. M. Hung, M.V.M. Rao, D. Tsai, Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater. Chem. Phys. 101, 297–302 (2007)

    CAS  Google Scholar 

  10. X. Dai, C. Yu, Q. Wu, Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane. J. Nat. Gas Chem. 17, 415–418 (2008)

    CAS  Google Scholar 

  11. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1–x)ZnxFeO3, x = 010, and 030). J. Magn. Magn. Mater. 329, 133–141 (2013)

    CAS  Google Scholar 

  12. Y. Janbutrach, S. Hunpratub, E. Swatsitang, Ferromagnetism and optical properties of La1xAlxFeO3 nanopowders nanoscale. Res. Lett. 9, 498–954 (2014)

    Google Scholar 

  13. A. Rai, A.K. Thakur, Effect of co-substitution on structural, optical, dielectric and magnetic behavior of LaFeO3. J. Alloys Compd. 695, 3579–3588 (2017)

    CAS  Google Scholar 

  14. Q. Lin, J. Lin, X. Yang, Y. He, L. Wang, J. Dong, The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 45, 3333–3340 (2019)

    CAS  Google Scholar 

  15. P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol-gel route. Curr. Appl. Phys. 11, 451–456 (2011)

    Google Scholar 

  16. Z. Xiaojing, L. Huaju, L. Yong, S. Wenjie, Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite. Chin. J. Catal. 33, 1109–1114 (2012)

    Google Scholar 

  17. F. He, X. Li, K. Zhao, Z. Huang, G. Wei, H. Li, The use of La1xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane. Fuel 108, 465–473 (2013)

    CAS  Google Scholar 

  18. K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, La1−xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas. Chin. J. Catal. 35, 1196–1205 (2014)

    CAS  Google Scholar 

  19. A. Cyza, A. Kopia, L. Cieniek, J. Kusinski, Structural characterization of Sr doped LaFeO3 thin films prepared by pulsed electron deposition method. Mater. Today 3, 2707–2712 (2016)

    Google Scholar 

  20. A. Cyza, L. Cieniek, A. Kopia, Perovskite La1xSrxFeO3 thin film deposited by laser ablation process. Arch. Metall. Mater. 61, 1063–1067 (2016)

    CAS  Google Scholar 

  21. N. Koonsaeng, T. Thaweechai, A. Wisitsoraat, W. Wattanathana, S. Wannapaiboon, S. Chotiwan, C. Veranitisagul, A. Laobuthee, Preparation of Sr-doped LaFeO3 by thermal decomposition of metal organic complex and their gas-sensing properties. SOJ Mater. Sci. Eng. 6, 1–9 (2018)

    Google Scholar 

  22. D. Triyono, C.A. Kafa, H. Laysandra, Effect of Sr-substitution on the structural and dielectric properties of LaFeO3 perovskite materials. J. Adv. Dielect. 5, 1850063 (2018)

    Google Scholar 

  23. W. Wang, B. Lin, H. Zhang, Y. Sun, X. Zhang, H. Yang, Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1−xFeO3 nanofibers prepared by electrospinning. J. Phys. Chem. Sol. 124, 144–150 (2019)

    CAS  Google Scholar 

  24. T. Fujii, I. Matsusue, D. Nakatsuka, M. Nakanishi, J. Takada, Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Mater. Chem. Phys. 129, 805–809 (2011)

    CAS  Google Scholar 

  25. P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr. Appl. Phys. 13, 340–343 (2013)

    Google Scholar 

  26. W. Haron, T. Thaweechai, W. Wattanathana, A. Laobuthee, H. Manaspiya, C. Veranitisagul, N. Koonsaeng, Structural characteristics and dielectric properties of La1xCoxFeO3 and LaFe1xCoxO3 synthesized via metal organic complexes. Energy Proc. 34, 791–800 (2013)

    CAS  Google Scholar 

  27. K. Ji, H. Dai, J. Deng, L. Song, S. Xie, W. Han, Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. J. Sol. State Chem. 199, 164–170 (2013)

    CAS  Google Scholar 

  28. M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

    CAS  Google Scholar 

  29. S.T. Beckettb, M.G. Francesconi, P.M. Geary, G. Mackenzie, A.P.E. Maulny, DSC study of sucrose melting. Carbohydr. Res. 341, 2591–2599 (2006)

    Google Scholar 

  30. M.A. Gabal, S. Kosa, T.S. El Muttairi, Magnetic dilution effect of nano-crystalline NiFe2O4 synthesized via sucrose-assisted combustion route. Ceram. Int. 40, 675–681 (2014)

    CAS  Google Scholar 

  31. R. Abazari, S. Sanati, L.A. Saghatforoush, A unique and facile preparation of lanthanum ferrite nanoparticles in emulsion nanoreactors: morphology, structure, and efficient photocatalysis. Mater. Sci. Semicond. Process. 25, 301–306 (2014)

    CAS  Google Scholar 

  32. P.V. Gosavi, R.B. Biniwale, Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 119, 324–329 (2010)

    CAS  Google Scholar 

  33. G. Deng, Y. Chen, M. Tao, C. Wu, X. Shen, H. Yang, Electrochemical properties of La1−xSrxFeO3 (x = 0.2, 0.4) as negative electrode of Ni–MH batteries. Electrochim. Acta 54, 3910–3914 (2009)

    CAS  Google Scholar 

  34. C.A. Kafa, D. Triyono, H. Laysandra, Effect of Sr substitution on the room temperature electrical properties of La1xSrxFeO3 nano-crystalline materials. AIP Conf. Proc. 1862, 030042 (2017). https://doi.org/10.1063/1.4991146

    Article  CAS  Google Scholar 

  35. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Google Scholar 

  36. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al-Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    CAS  Google Scholar 

  37. Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties. J. Appl. Biomater. Funct. Mater. 16, 17–25 (2018)

    CAS  Google Scholar 

  38. Y. He, C. Lei, Q. Lin, J. Dong, Y. Yu, L. Wang, Mössbauer and structural properties of La-substituted Ni0.4Cu0.2Zn0.4Fe2O4 nanocrystalline ferrite. Sci. Adv. Mater. 7, 1809–1815 (2015)

    CAS  Google Scholar 

  39. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79, 1393–1396 (1997)

    CAS  Google Scholar 

  40. E. Winkler, R.D. Zyster, M.V. Mansilla, D. Fiorant, Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 72, 132409 (2005)

    Google Scholar 

  41. F. Yang, X.X. Yang, Q. Lin, R.J. Wang, H. Yang, Y. He, Microstructure and magnetic studies of La1xSrxFeO3 nano particles fabricated by the citrate sol–gel method. Mater. Sci. 25, 231–237 (2019)

    Google Scholar 

  42. J. Li, X. Kou, Y. Qin, H. He, Microstructure and magnetic properties of La1xSrxFeO3δ nanoparticles. Phys. State Sol. 191, 255–259 (2002)

    CAS  Google Scholar 

  43. E.K. Abdel-Khalek, H.M. Mohamed, Synthesis, structural and magnetic properties of La1−xCaxFeO3 prepared by the co-precipitation method. Hyperfine Interact. 222, 57–67 (2013)

    CAS  Google Scholar 

  44. P. Mathur, A. Thakur, M. Singh, Effect of nanoparticles on the magnetic properties of Mn–Zn soft ferrite. J. Magn. Magn. Mater 320, 1364–1369 (2008)

    CAS  Google Scholar 

  45. Q. Li, W. Wang, Fabrication and properties of Mn0.5Zn0.5Fe2O4 nanofibers. Solid State Sci. 12, 1303–1306 (2010)

    CAS  Google Scholar 

  46. M.A. Gabal, F. Al-Solami, Y.M. Al-Angari, A.A. Al-Juaid, A.A. Ali, K. Huang, M. Alsabban, Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.05.187

    CAS  Google Scholar 

  47. A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

    CAS  Google Scholar 

  48. A.S. Nesaraj, S. Dheenadayalan, I. Arul Raj, R. Pattabiraman, Wet chemical synthesis and characterization of strontium-doped LaLaFeO3 cathodes for an intermediate temperature solid oxide fuel cell application. J. Ceram. Process. Res. 13, 601–606 (2012)

    Google Scholar 

  49. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ceramic. Acta Phys. Polon. A 122, 174 (2012)

    CAS  Google Scholar 

  50. K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4–BaTiO3 composites. Mater. Sci. Eng. B 8, 53 (2001)

    Google Scholar 

  51. M. Ajmal, N.A. Shah, A. Maqsood, M.S. Awan, M. Arif, Influence of sintering time on the structural, electrical and magnetic properties of polycrystalline Cu0.6Zn0.4Fe2O4 ferrites. J. Alloys Compd. 508, 226–232 (2010)

    CAS  Google Scholar 

  52. G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis structural and dielectric studies of nickel substituted cobalt–zinc ferrite. Mater. Sci. Appl. 1, 19–24 (2010)

    CAS  Google Scholar 

  53. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5−xZn0.3Mg0.2Fe2O4 ferrites. J. Alloys Compd. 509, L113–L118 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Al-Solami, F., Al Angari, Y.M. et al. Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. J Mater Sci: Mater Electron 31, 3146–3158 (2020). https://doi.org/10.1007/s10854-020-02861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02861-6

Navigation