Skip to main content
Log in

Improved ethanol gas-sensing properties of optimum Fe–ZnO mesoporous nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe-doped ZnO (Fe–ZnO) mesoporous nanoparticles have been synthesized via a facile hydrothermal method, which utilizes pluronic triblock copolymer polyethylene glycol–polypropylene glycol–polyethylene glycol (PEO-PPO-PEO) as the pore-forming agent. Fe–ZnO composites have an unique porous structure. Their pore sizes increase with Fe-doping concentration and reach a maximum as Fe concentration is 15 at.%; the specific surface area of synthesized mesoporous Fe–ZnO nanoparticles reaches a maximum as the Fe concentration is about 11 at.%. Electron microscopy, vapor pressure isotherm measurements and photoluminescence (PL) were used to characterize synthesized Fe–ZnO composites. Fe–ZnO-based gas sensors exhibit excellent response in detecting ethanol; the sensing response of Fe(11 at.%)–ZnO reaches 319.8, which is significantly higher than most of the ZnO-based gaseous sensors. The improved sensitivity is ascribed to the increase of oxygen-related defects and specific surface area of Fe–ZnO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Liu, G. Wang, A. Ng et al., Appl. Surf. Sci. 357, 2169–2175 (2015)

    CAS  Google Scholar 

  2. C.Y. Liu, H.Y. Xu, Y. Sun et al., OPT Express 22, 16731–16737 (2014)

    CAS  Google Scholar 

  3. S. Luo, Y. Shen, Z. Wu et al., Mater. Sci. Semicond. Process. 41, 535–543 (2016)

    CAS  Google Scholar 

  4. S. Park, S. Kim, H. Ko, C. Lee, J. Electro. Ceram. 33(1–2), 75–81 (2014)

    CAS  Google Scholar 

  5. Z.Q. Zheng, J.D. Yao, B. Wang, G.W. Yang, Sci. Rep. 5, 11070 (2015)

    CAS  Google Scholar 

  6. L. Zhu, Y. Li, W. Zeng, Appl. Surf. Sci. 427, 281–287 (2018)

    CAS  Google Scholar 

  7. F. Cao, C. Li, M. Li et al., Appl. Surf. Sci. 447, 173–181 (2018)

    CAS  Google Scholar 

  8. L. Wang, Y. Kang, X. Liu et al., Sens. Actuators B 162, 237–243 (2011)

    Google Scholar 

  9. C.T. Quy, C.M. Hung, N. Duy et al., J. Electron. Mater. 46, 3406–3411 (2017)

    CAS  Google Scholar 

  10. N. Saito, K. Watanabe, H. Haneda et al., J. Phys. Chem. C 122, 7353–7360 (2018)

    CAS  Google Scholar 

  11. K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Microporous Mesoporous Mater. 134(1–3), 195–202 (2010)

    CAS  Google Scholar 

  12. N. Han, L. Chai, Q. Wang et al., Sens. Actuators B 147, 525–530 (2010)

    CAS  Google Scholar 

  13. G. He, M. Jiang, B. Li et al., J. Mater. Chem. C 5, 10938–10946 (2017)

    Google Scholar 

  14. A.B. Khatibani, M. Abbasi, J. Sol-Gel Sci. Technol. 86(2), 255–265 (2018)

    CAS  Google Scholar 

  15. Ganesh RS, Patil VL, Durgadevi E, et al. (2019) Chem. Phys. Lett. 136725***.

  16. M. Boshta, E. Chikoidze, M. Sayed et al., J. Mater. Sci. Lett. 49, 7943–7948 (2014)

    CAS  Google Scholar 

  17. S. Chattopadhyay, T.K. Nath, A.J. Behan et al., J. Magn. Magn. Mater. 323, 1033–1039 (2011)

    CAS  Google Scholar 

  18. M.L. Dinesha, H.S. Jayanna, S. Ashoka, G.T. Chandrappa, J. Alloy Compd. 485(1–2), 538–541 (2009)

    CAS  Google Scholar 

  19. L. Zhang, B. Dong, L. Xu et al., Sens. Actuators B 252, 367–374 (2017)

    CAS  Google Scholar 

  20. V. Postica, I. Hölken, V. Schneider et al., Mater. Sci. Semicond. Process. 49, 20–33 (2016)

    CAS  Google Scholar 

  21. A. Khayatian, S. Safa, R. Azimirad et al., Physica E 84, 71–78 (2016)

    CAS  Google Scholar 

  22. Y. Shen, S. Luo, Z. Wu et al., J. Mater. Sci. 27, 12660–12668 (2016)

    CAS  Google Scholar 

  23. J. Tan, J. Chen, K. Liu, X. Huang, Sens. Actuators B 230, 46–53 (2016)

    CAS  Google Scholar 

  24. M.A.R. Miranda, J.M. Sasaki, Acta Crystallogr. A 74(1), 54–65 (2018)

    CAS  Google Scholar 

  25. S. Bai, T. Guo, Y. Zhao et al., Sens. Actuators B 195, 657–666 (2014)

    CAS  Google Scholar 

  26. S.T. Mun et al., J. Ceram. Soc. 119(1390), 517–521 (2011)

    Google Scholar 

  27. L. Luo, W. Tao, X. Hu et al., J. Power Sources 196, 10518–10525 (2011)

    CAS  Google Scholar 

  28. J. Liu, Y. Lu, X. Cui et al., Sens. Actuators B 248, 862–867 (2017)

    CAS  Google Scholar 

  29. X. Wang, Y. Zhang, C. Hao et al., Ind. Eng. Chem. Res. 53, 6585–6592 (2014)

    CAS  Google Scholar 

  30. Groen JC, Peffer LA, Pérez-Ramı́rez J (2003) Microporous Mesoporous Mater. 60(1–3), 1–17.

  31. L. Zhang, J. Zhao, H. Lu et al., Sens. Actuators B 171, 1101–1109 (2012)

    Google Scholar 

  32. Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Sens. Actuators 208, 112–121 (2015)

    CAS  Google Scholar 

  33. X. Li, J. Wei, J. Xu et al., J. Nanopart. Res. 19, 1–11 (2017)

    Google Scholar 

  34. F.J. Ren, X.B. Yu, Y.H. Ling, J.Y. Feng, Int. J. Min. Met. Mater. 19, 461–466 (2012)

    CAS  Google Scholar 

  35. J. Xu, S. Li, L. Li, L. Chen, Y. Zhu, Ceram. Int. 44(14), 16773–16780 (2018)

    CAS  Google Scholar 

  36. R. Vyas, P. Kumar, J. Dwivedi et al., RSC Adv. 4, 54953–54959 (2014)

    CAS  Google Scholar 

  37. S. Huang, T. Wang, Q. Xiao, J. Phys. Chem. Solids 76, 51–58 (2015)

    CAS  Google Scholar 

  38. A. Rambu, C. Doroftei, L. Ursu, F. Iacomi, J. Mater. Sci. Lett. 48, 4305–4312 (2013)

    CAS  Google Scholar 

  39. Y. Cai, H. Fan, M. Xu et al., Cryst. Eng. Commun. 15, 7339–7345 (2013)

    CAS  Google Scholar 

  40. S.Y. Seo, C.H. Kwak, S.H. Kim et al., J. Cryst. Growth 312, 2093–2097 (2010)

    CAS  Google Scholar 

  41. C. Zhao, C. Shao, X. Li et al., J. Alloy Compd. 747, 916–925 (2018)

    CAS  Google Scholar 

  42. N. Han, P. Hu, A. Zuo et al., Sens. Actuators B 145, 114–119 (2010)

    CAS  Google Scholar 

  43. O.M. Lemine, M. Bououdina, M. Sajieddine et al., Phys B 406, 1989–1994 (2011)

    CAS  Google Scholar 

  44. A. Silambarasu, A. Manikandan, K. Balakrishnan, J. Supercond. Nov. Magn. 30(9), 2631–2640 (2017)

    CAS  Google Scholar 

  45. A. Yu, J. Qian, H. Pan et al., Sens. Actuators B 158, 9–16 (2011)

    CAS  Google Scholar 

  46. A. Sahai, Y. Kumar, V. Agarwal et al., J. Appl. Phys. 116, 164315 (2014)

    Google Scholar 

Download references

Funding

This funding was supported by National Natural Science Foundation of China (Grant No. 11775139, No.11375112), Shanghai City Committee of Science and Technology (Grant No. 15520500200), Water Resources Department of Guangdong Province (CN) (Grant No. XJ2016126) and UMKC’s Funding for Excellency grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, Q., Li, T. et al. Improved ethanol gas-sensing properties of optimum Fe–ZnO mesoporous nanoparticles. J Mater Sci: Mater Electron 31, 3074–3083 (2020). https://doi.org/10.1007/s10854-019-02852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02852-2

Navigation