Skip to main content

Advertisement

Log in

Co-oxidation of arsenic(III) and iron(II) ions by pressurized oxygen in acidic solutions

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Nazari, R. Radzinski, and A. Ghahreman, Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174(2017), p. 258.

    Article  CAS  Google Scholar 

  2. P.L. Smedley and D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17(2002), No. 5, p. 517.

    Article  CAS  Google Scholar 

  3. D. Filippou and G.P. Demopoulos, Arsenic immobilization by controlled scorodite precipitation, JOM, 49(1997), No. 12, p. 52.

    Article  CAS  Google Scholar 

  4. M.S. Safarzadeh, M.S. Moats, and J.D. Miller, An update to “Recent trends in the processing of enargite concentrates”, Miner. Process. Extr. Metall. Rev., 35(2014), No. 6, p. 390.

    Article  CAS  Google Scholar 

  5. M.A. Fernández, M. Segarra, and F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydrometallurgy, 41(1996), No. 2–3, p. 255.

    Article  Google Scholar 

  6. L.U. Molnár, E. Virčíkova, and P. Lech, Experimental study of As(III) oxidation by hydrogen peroxide, Hydrometallurgy, 35(1994), No. 1, p. 1.

    Article  Google Scholar 

  7. L.H. Sun, R.P. Liu, S.J. Xia, Y.L. Yang, and G.B. Li, Enhanced As(III) removal with permanganate oxidation, ferric chloride precipitation and sand filtration as pretreatment of ultrafiltration, Desalination, 243(2009), No. 1–3, p. 122.

    CAS  Google Scholar 

  8. S. Sorlini and F. Gialdini, Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine, Water Res., 44(2010), No. 19, p. 5653.

    Article  CAS  Google Scholar 

  9. M.C. Dodd, N.D. Vu, A. Ammann, V.C. Le, R. Kissner, H.V. Pham, T.H. Cao, M. Berg, and U. von Gunten, Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment, Environ. Sci. Technol., 40(2006), No. 10, p. 3285.

    Article  CAS  Google Scholar 

  10. S. Khuntia, S.K. Majumder, and P. Ghosh, Oxidation of As(III) to As(V) using ozone microbubbles, Chemosphere, 97(2014), p. 120.

    Article  CAS  Google Scholar 

  11. T. Loegager, J. Holcman, K. Sehested, and T. Pedersen, Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31(1992), No. 17, p. 3523.

    Article  CAS  Google Scholar 

  12. M. Bissen and F.H. Frimmel, Arsenic—a review. part II: oxidation of arsenic and its removal in water treatment, Acta Hydroch. Hydrob., 31(2003), No. 2, p. 97.

    Article  CAS  Google Scholar 

  13. S.L. Shumlas, S. Singireddy, A.C. Thenuwara, N.H. Attanayake, R.J. Reeder, and D.R. Strongin, Oxidation of arsenite to arsenate on birnessite in the presence of light, Geochem. Trans., 17(2016), art No. 5.

  14. B.A. Manning, S.E. Fendorf, B. Bostick, and D.L. Suarez, Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite, Environ. Sci. Technol., 36(2002), No. 5, p. 976.

    Article  CAS  Google Scholar 

  15. Y.H. Li, Z.H. Liu, F.P. Liu, Q.H. Li, Z.Y. Liu, and L. Zeng, Promotion effect of KMnO4 on the oxidation of As(III) by air in alkaline solution, J. Hazard. Mater., 280(2014), p. 315.

    Article  CAS  Google Scholar 

  16. N. Bhandari, R.J. Reeder, and D.R. Strongin, Photoinduced oxidation of arsenite to arsenate in the presence of goethite, Environ. Sci. Technol., 46(2012), No. 15, p. 8044.

    Article  CAS  Google Scholar 

  17. R. Woods, I.M. Kolthoff, and E.J. Meehan, Arsenic(IV) as an intermediate in the induced oxidation of arsenic(III) by the iron(II)-persulfate reaction and the photoreduction of iron(III). I. absence of oxygen, J. Am. Chem. Soc., 85(1963), No. 16, p. 2385.

    Article  CAS  Google Scholar 

  18. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I, Hdrometallurgy, 90(2008), No. 2–4, p. 92.

    Article  CAS  Google Scholar 

  19. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part II. Effect of temperature and air, Hydrometallurgy, 90(2008), No. 2–4, p. 85.

    Article  CAS  Google Scholar 

  20. M.R. Rönnholm, J. Wärnå, T. Salmi, I. Turunen, and M. Luoma, Kinetics of oxidation of ferrous sulfate with molecular oxygen, Chem. Eng. Sci., 54(1999), No. 19, p. 4223.

    Article  Google Scholar 

  21. Y. Wang, K. Otsuka, and K. Ebitani, In situ FTIR study on the active oxygen species for the conversion of methane to methanol, Catal. Lett., 35(1995), No. 3–4, p. 259.

    Article  CAS  Google Scholar 

  22. D.A. Wink, R.W. Nims, M.F. Desrosiers, P.C. Ford, and L.K. Keefer, A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical, Chem. Res. Toxicol., 4(1991), No. 5, p. 510.

    Article  CAS  Google Scholar 

  23. S.H. Bossmann, E. Oliveros, S. Göb, S. Siegwart, E.P. Dahlen, L. Payawan, M. Straub, M. Wörner, and A.M. Braun, New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions, J. Phys. Chem. A, 102(1998), No. 28, p. 5542.

    Article  CAS  Google Scholar 

  24. S.J. Hug and O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction, Environ. Sci. Technol., 37(2003), No. 12, p. 2734.

    Article  CAS  Google Scholar 

  25. Z.H. Wang, R.T. Bush, and J.S. Liu, Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands, Chemosphere, 93(2013), No. 9, p. 1936.

    Article  CAS  Google Scholar 

  26. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite, Hydrometallurgy, 96(2009), No. 3, p. 189.

    Article  CAS  Google Scholar 

  27. A.J. Monhemius and P.M. Swash, Removing and stabilizing as from copper refining circuits by hydrothermal processing, JOM, 51(1999), No. 9, p. 30.

    Article  CAS  Google Scholar 

  28. J. Müller, Determination of inorganic arsenic(III) in ground water using hydride generation coupled to ICP-AES (HG-ICP-AES) under variable sodium boron hydride (NaBH4) concentrations, Fresenius J. Anal. Chem., 363(1999), No. 5–6, p. 572.

    Google Scholar 

  29. X.W. Yang, A.P. He, and B.Z. Yuan, Handbook of Thermodynamic Calculation for High Temperature Aqueous Solutions, Metallurgical Industry Press, Beijing, 1983, p. 34.

    Google Scholar 

  30. J.D. Rush, and B.H.J. Bielski, Pulse radiolysis studies of alkaline iron(III) and iron(VI) solutions. Observation of transient iron complexes with intermediate oxidation states, J. Am. Chem. Soc., 108(1986), No. 3, p. 523.

    Article  CAS  Google Scholar 

  31. U.K. Klaening, B.H.J. Bielski, and K. Sehested, Arsenic(IV). A pulse-radiolysis study, Inorg. Chem., 28(1989), No. 14, p. 2717.

    Article  CAS  Google Scholar 

  32. B.H.J. Bielski and D.E. Cabelli, Superoxide and hydroxyl radical chemistry in aqueous solution, [in] C.S. Foote, J.S. Valentine, A. Greenberg, and J.F. Liebman, eds., Active Oxygen in Chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH Series), Vol 2. Springer, Dordrecht, 1995, p. 70.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51574285). The authors would like to thank the help of PhD Candidate Tao Jiang and Dr. Zhao-ming Sun in Central South University, China, and Dr. Ahmad Ghahreman in Queen’s University, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Kz., Ke, Pc., Liu, Zy. et al. Co-oxidation of arsenic(III) and iron(II) ions by pressurized oxygen in acidic solutions. Int J Miner Metall Mater 27, 181–189 (2020). https://doi.org/10.1007/s12613-019-1786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1786-9

Keywords

Navigation