Skip to main content
Log in

Synthesis, characterization and quantum chemical study of optoelectronic nature of ferrocene derivatives

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Two new ferrocene derivatives N-(2-hydroxy-5-methylphenyl) ferrocylideneamine (Fe1) and N-(2-hydroxy-5-chlorophenyl) ferrocylideneamine (Fe2) have been synthesized to study the effect on electronic, optical and charge transfer properties while changing the electron donating group with electron withdrawing group. The synthesized compounds were characterized by different spectroscopic (FTIR, UV–Vis, \(^{\mathrm {1}}\hbox {H NMR}\), \(^{\mathrm {13}}\hbox {C NMR}\)) and spectrometric (EI) techniques. The geometries for ground and excited states were optimized by density functional theory (DFT/B3lyp/6-31G**, LANL2DZ) and time-dependent DFT (TD-B3lyp/6-31G**, LANL2DZ) levels, respectively. The absorption, fluorescence and phosphorescence spectra were estimated using TD-B3LYP and TD-wB97XD functionals and 6-31G** basis set for C, H, N, O and LANL2DZ for Fe atoms in dichloromethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ovchenkova E N, Bichan N G and Lomova T N 2018 Russ. J. Inorg. Chem.63 391

    CAS  Google Scholar 

  2. Nishihara H 1997 in Handbook of organic conductive molecules and polymers H S Nalwa (ed), Chapter 19, vol. 2 (Weinheim: Wiley) p 799

  3. Long X, Qiu W, Wang Z, Wang Y and Yang S 2019 Mater. Today Chem.11 16

    CAS  Google Scholar 

  4. Khan M D, Malik M A and Revaprasadu N 2019 Coord. Chem. Rev.388 24

    CAS  Google Scholar 

  5. Abbas G, Hassan A, Irfan A, Mir M and Wu G 2015 J. Struct. Chem.56 92

    CAS  Google Scholar 

  6. Ghosh N N, Habib M, Pramanik A, Sarkar P and Pal S 2018 Bull. Mater. Sci.41 56

    Google Scholar 

  7. Arunkumar A, Prakasam M and Anbarasan P M 2017 Bull. Mater. Sci.40 1389

    CAS  Google Scholar 

  8. Wang S, Xu Z, Wang T, Xiao T, Hu X Y, Shen Y Z et al 2018 Nat. Commun.9 1737

    Google Scholar 

  9. Bishop J J, Davison A, Katcher M L, Lichtenberg D W, Merrill R E and Smart J C 1971 J. Organomet. Chem.27 241

    CAS  Google Scholar 

  10. Nerngchamnong N, Yuan L, Qi D C, Li J, Thompson D and Nijhuis C A 2013 Nat. Nanotechnol.8 113

    CAS  Google Scholar 

  11. Inkpen M S, Scheerer S, Linseis M, White A J P, Winter R F, Albrecht T et al 2016 Nat. Chem.8 825

    CAS  Google Scholar 

  12. Astruc D 2017 Europ. J. Inorg. Chem.2017 6

    CAS  Google Scholar 

  13. Larik F A, Saeed A, Fattah T A, Muqadar U and Channar P A 2017 Appl. Organomet. Chem.31 e3664

    Google Scholar 

  14. Morari C, Rungger I, Rocha A R, Sanvito S, Melinte S and Rignanese G M 2009 ACS Nano3 4137

    CAS  Google Scholar 

  15. Radhakrishnan S and Paul S 2007 Sens. Actuator B: Chem.125 60

    CAS  Google Scholar 

  16. Zhu Y, Clot O, Wolf M O and Yap G P A 1998 J. Am. Chem. Soc.120 1812

    CAS  Google Scholar 

  17. Templeton A C, Wuelfing W P and Murray R W 2000 Acc. Chem. Res.33 27

    CAS  Google Scholar 

  18. Getautis V, Daskeviciene M, Malinauskas T and Jankauskas V 2007 Monatsh. Chem. 138 277

    CAS  Google Scholar 

  19. Shago R F, Swarts J C, Kreft E and Van Rensburg C E J 2007 Anticancer Res.27 3431

    CAS  Google Scholar 

  20. Togni A and Hayashi T 1995 Ferrocenes: homogeneous catalysis, organic synthesis, materials science (Weinheim: Wiley-VCH) ISBN 3-527-29048-6

  21. Imahori H, Norieda H, Yamada H, Nishimura Y, Yamazaki I, Sakata Y et al 2001 J. Am. Chem. Soc.123 100

    CAS  Google Scholar 

  22. Zhang B, Fan F, Xue W, Liu G, Fu Y, Zhuang X et al 2019 Nat. Commun.10 736

    CAS  Google Scholar 

  23. Tan H, Yao H, Song Y, Zhu S, Yu H and Guan S 2017 Dyes Pigm.146 210

    CAS  Google Scholar 

  24. Kanthasamy K, Ring M, Nettelroth D, Tegenkamp C, Butenschön H, Pauly F et al 2016 Small12 4849

    CAS  Google Scholar 

  25. Singla P, Van Steerteghem N, Kaur N, Ashar A Z, Kaur P, Clays K et al 2017 J. Mater. Chem. C5 697

    CAS  Google Scholar 

  26. Orendt A M, Facelli J C, Jiang Y J and Grant D M 1998 J. Phys. Chem. A102 7692

    CAS  Google Scholar 

  27. Mayor-López M J and Weber J 1997 Chem. Phys. Lett.281 226

    Google Scholar 

  28. Hohenberg P and Kohn W 1964 Phys. Rev.136 B864

    Google Scholar 

  29. Kohn W, Becke A D and Parr R G 1996 J. Phys. Chem.100 12974

    CAS  Google Scholar 

  30. Lee C, Yang W and Parr R G 1988 Phys. Rev. B37 785

    CAS  Google Scholar 

  31. Coriani S, Haaland A, Helgaker T and Jørgensen P 2006 Chem. Phys. Chem.7 245

    CAS  Google Scholar 

  32. Hay P J and Wadt W R 1985 J. Chem. Phys.82 270

    CAS  Google Scholar 

  33. Wadt W R and Hay P J 1985 J. Chem. Phys.82 284

    CAS  Google Scholar 

  34. Hay P J and Wadt W R 1985 J. Chem. Phys.82 299

    CAS  Google Scholar 

  35. Irfan A, Chaudhry A R, Jin R, Al-Sehemi A G, Muhammad S and Tang S 2017 J. Taiwan Inst. Chem. Eng.80 239

    CAS  Google Scholar 

  36. Irfan A and Abbas G 2018 Z. Naturforsch. A73 337

    CAS  Google Scholar 

  37. Aliabad H A R and Chahkandi M 2017 Z. Anorg. Allg. Chem.643 420

    Google Scholar 

  38. Gryaznova T P, Katsyuba S A, Milyukov V A and Sinyashin O G 2010 J. Organomet. Chem.695 2586

    CAS  Google Scholar 

  39. Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J et al 1982 J. Chem. Phys.77 3654

    CAS  Google Scholar 

  40. Becke A D 1993 J. Chem. Phys.98 5648

    CAS  Google Scholar 

  41. Irfan A and Mahmood A 2018 J. Clust. Sci.29 359

    CAS  Google Scholar 

  42. Irfan A, Assiri M and Al-Sehemi A G 2018 Org. Electron.57 211

    CAS  Google Scholar 

  43. Irfan A, Chaudhry A R, Muhammad S and Al-Sehemi A G 2019 Optik179 526

    CAS  Google Scholar 

  44. Irfan A, Al-Sehemi A G, Chaudhry A R, Muhammad S and Asiri A M 2016 Optik127 10148

    CAS  Google Scholar 

  45. Irfan A 2014 Optik125 4825

    CAS  Google Scholar 

  46. Reeta Felscia U, Rajkumar B J M and Briget Mary M 2018 J. Mater. Sci.53 15213

    CAS  Google Scholar 

  47. Yang G, Su Z and Qin C 2006 J. Phys. Chem. A110 4817

    CAS  Google Scholar 

  48. Wazzan N, El-Shishtawy R M and Irfan A 2017 Theor. Chem. Acc.137 9

    Google Scholar 

  49. Wazzan N and Irfan A 2018 Org. Electron.63 328

    CAS  Google Scholar 

  50. Irfan A 2019 Comput. Theor. Chem.1159 1

    CAS  Google Scholar 

  51. Irfan A 2019 Results Phys.13 102304

    Google Scholar 

  52. Irfan A, Al-Sehemi A G, Assiri M A and Mumtaz M W 2019 Bull. Mater. Sci.42 145

    Google Scholar 

  53. Pratik S M and Datta A 2013 Phys. Chem. Chem. Phys.15 18471

    CAS  Google Scholar 

  54. Akhtaruzzaman M, Seya Y, Asao N, Islam A, Kwon E, El-Shafei A et al 2012 J. Mater. Chem.22 10771

    CAS  Google Scholar 

  55. Chen J, Bai F Q, Wang J, Hao L, Xie Z F, Pan Q J et al 2012 Dyes Pigm.94 459

    CAS  Google Scholar 

  56. Fan W, Tan D and Deng W Q 2012 Chem. Phys. Chem.13 2051

    CAS  Google Scholar 

  57. Zhang J, Li H B, Sun S L, Geng Y, Wu Y and Su Z M 2012 J. Mater. Chem.22 568

    CAS  Google Scholar 

  58. Preat J, Michaux C, Jacquemin D and Perpète E A 2009 J. Phys. Chem. C113 16821

    CAS  Google Scholar 

  59. Irfan A, Jin R, Al-Sehemi A G and Asiri A M 2013 Spectrochim. Acta A110 60

    CAS  Google Scholar 

  60. Dev P, Agrawal S and English N J 2013 J. Phys. Chem. A117 2114

    CAS  Google Scholar 

  61. Autschbach J 2009 Chem. Phys. Chem.10 1757

    CAS  Google Scholar 

  62. Dreuw A and Head-Gordon M 2005 Chem. Rev.105 4009

    CAS  Google Scholar 

  63. Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett.393 51

    CAS  Google Scholar 

  64. Pastore M, Mosconi E, De Angelis F and Grätzel M 2010 J. Phys. Chem. C114 7205

    CAS  Google Scholar 

  65. Takano Y and Houk K N 2005 J. Chem. Theory Comput.1 70

    Google Scholar 

  66. Bhattacharyya K and Datta A 2017 J. Phys. Chem. C121 1412

    CAS  Google Scholar 

  67. Brédas J L, Beljonne D, Coropceanu V and Cornil J 2004 Chem. Rev.104 4971

    Google Scholar 

  68. Zhao C, Wang W and Ma Y 2013 Comput. Theor. Chem.1010 25

    CAS  Google Scholar 

  69. Li P, Bu Y and Ai H 2004 J. Phys. Chem. A108 1200

    CAS  Google Scholar 

  70. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Gaussian16 software (Wallingford, CT: Gaussian, Inc.)

  71. Chai W and Jin R 2016 J. Mol. Struct.1103 177

    CAS  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this work through research groups program under grant number R.G.P.2/15/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Irfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, A., Al-Zeidaneen, F.K., Ahmed, I. et al. Synthesis, characterization and quantum chemical study of optoelectronic nature of ferrocene derivatives. Bull Mater Sci 43, 45 (2020). https://doi.org/10.1007/s12034-019-1992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1992-0

Keywords

Navigation