Skip to main content

Advertisement

Log in

Ternary system from mesoporous CdS–ZnS modified with polyaniline for removal of cationic and anionic dyes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, mesoporous CdS (130.7 m2/g) was prepared; then, ZnS was deposited by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) method, to get CdS–ZnS(C) and CdS–ZnS(S), respectively. Subsequently, the highest efficient binary hybrid was sensitized with polyaniline to produce CdS–ZnS–PANI for the first time. XRD and EDX analyses confirmed the coating of CdS with ZnS using CBD and SILAR method. The careful examination for the surface morphology of the binary hybrids illustrated that CdS–ZnS(S) has uniform morphology and the CdS nanoparticles are homogeneously overcoated with ZnS. In contrast, CdS–ZnS(C) exhibits inhomogeneous surface, where there are ZnS particles that aggregate together and there is another region which contains ZnS deposited onto CdS. The estimated band gap of CdS, CdS–ZnS(S), and CdS–ZnS–PANI was 2.36 eV, 2.44 eV, and 1.9 eV, respectively. The removal efficiency for cationic and anionic dyes single and/or in combination using CdS, ZnS, CdS–ZnS(C), CdS–ZnS(S), PANI, and CdS–ZnS–PANI was studied. The effect of the amount of ZnS loaded by SILAR process on the activity of the CdS–ZnS(S) was presented. The results proposed that CdS–ZnS(S) exhibits selective adsorption and high removal efficiency for cationic dye compared to CdS–ZnS(C) due to higher negative zeta potential and large surface area. The CdS–ZnS–PANI ternary nanocomposite showed uptake efficiency of 96.7% for cationic dye (MB) and 94.3% for anionic dye (MO) in a mixed dye solution after 10 min. Finally, the possible adsorption mechanism was proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Hu, Z. Li, L. Lu, K. Dai, J. Zhang, R. Li, C. Liang, J. Colloid Interface Sci. 555, 166 (2019)

    Article  CAS  Google Scholar 

  2. T. Hu, K. Dai, J. Zhang, G. Zhu, C. Liang, Appl. Surf. Sci. 481, 1385 (2019)

    Article  CAS  Google Scholar 

  3. X. Ke, K. Dai, G. Zhu, J. Zhang, C. Liang, Appl. Surf. Sci. 481, 669 (2019)

    Article  CAS  Google Scholar 

  4. K. Dai, J. Lv, J. Zhang, G. Zhu, L. Geng, C. Liang, ACS Sustain. Chem. Eng. 6, 12817 (2018)

    Article  CAS  Google Scholar 

  5. Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B Environ. 241, 528 (2019)

    Article  CAS  Google Scholar 

  6. F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488, 151 (2019)

    Article  CAS  Google Scholar 

  7. Z. Li, X. Wang, J. Zhang, C. Liang, L. Lu, K. Dai, Chin. J. Catal. 40, 326 (2019)

    Article  CAS  Google Scholar 

  8. Y. Huo, Z. Wang, J. Zhang, C. Liang, K. Dai, Appl. Surf. Sci. 459, 271 (2018)

    Article  CAS  Google Scholar 

  9. Y. Huo, Y. Yang, K. Dai, J. Zhang, Appl. Surf. Sci. 481, 1260 (2019)

    Article  CAS  Google Scholar 

  10. Y. Cheng, L. An, F. Gao, G. Wang, X. Li, X. Chen, Res. Chem. Intermed. 39, 3969 (2013)

    Article  CAS  Google Scholar 

  11. A. Ahmad, S.H. Mohd-Setapar, S.C. Chuo, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, RSC Adv. 5, 30801 (2015)

    Article  CAS  Google Scholar 

  12. M. Liu, X. Li, Y. Du, R. Han, Bioresour. Technol. Rep. 5, 238 (2019)

    Article  Google Scholar 

  13. X. Chen, F. Zhang, Q. Wang, X. Han, X. Li, J. Liu, H. Lin, F. Qu, Dalton Trans. 44, 3034 (2015)

    Article  CAS  Google Scholar 

  14. J.Y. Luo, Y.R. Lin, B.W. Liang, Y.D. Li, X.W. Mo, Q.G. Zeng, RSC Adv. 5, 100898 (2015)

    Article  CAS  Google Scholar 

  15. H. Han, H. Lu, X. Jiang, F. Zhong, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 301, 352 (2019)

    Article  CAS  Google Scholar 

  16. S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Phys. B Condens. Matter. 561, 170 (2019)

    Article  CAS  Google Scholar 

  17. K. Pandiselvi, S. Thambidurai, Colloids Surf. B Biointerfaces 108, 229 (2013)

    Article  Google Scholar 

  18. A. Olad, R. Nabavi, J. Hazard. Mater. 147, 845 (2007)

    Article  CAS  Google Scholar 

  19. L. Kumar, I. Rawal, A. Kaur, S. Annapoorn, Sens. Actuators, B 240, 408 (2017)

    Article  CAS  Google Scholar 

  20. B.H. Patil, K. Jang, S. Lee, J.H. Kim, C.S. Yoon, J. Kim, D.H. Kim, H. Ahn, J. Alloys Compd. 694, 111 (2017)

    Article  CAS  Google Scholar 

  21. C. Zhou, M. Hong, Y. Yang, N. Hu, Z. Zhou, L. Zhang, Y. Zhang, Appl. Surf. Sci. 484, 663 (2019)

    Article  CAS  Google Scholar 

  22. D. Mahanta, G. Madras, S. Radhakrishnan, S. Patil, J. Phys. Chem. B 113, 2293 (2009)

    Article  CAS  Google Scholar 

  23. R. Kumar, M.O. Ansari, A.M. Barakat, Ind. Eng. Chem. Res. 53, 7167 (2014)

    Article  CAS  Google Scholar 

  24. W. Yao, C. Shen, Y. Lu, Compos. Sci. Technol. 87, 8 (2013)

    Article  CAS  Google Scholar 

  25. P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)

    Article  CAS  Google Scholar 

  26. C.V. Reddy, J. Shim, M. Cho, J. Phys. Chem. Solids 103, 209 (2017)

    Article  CAS  Google Scholar 

  27. O. Amiri, S.M.H. Mashkani, M.M. Rad, F. Abdvali, Superlattices Microstruct. 66, 67 (2014)

    Article  CAS  Google Scholar 

  28. M. Koneswaran, R. Narayanaswamy, Sens. Actuators, B 210, 811 (2015)

    Article  CAS  Google Scholar 

  29. J. Su, T. Zhang, L. Wang, J. Shi, Y. Chen, Chin. J. Catal. 38, 489 (2017)

    Article  CAS  Google Scholar 

  30. Y. Lu, Y. Song, F. Wang, Mater. Chem. Phys. 138, 238 (2013)

    Article  CAS  Google Scholar 

  31. M.J. Chatterjee, A. Ghosh, A. Mondal, D. Banerjee, RSC Adv. 7, 36403 (2017)

    Article  CAS  Google Scholar 

  32. H. Zeghioud, S. Lamouri, Z. Safidine, M. Belbachir, J. Serb. Chem. Soc. 80, 917 (2015)

    Article  CAS  Google Scholar 

  33. H. Ali, N. Ismail, M.S. Amin, M. Mekewi, Front. Energy 12, 249 (2018)

    Article  Google Scholar 

  34. A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Nanoparticle Res. 14, 776 (2012)

    Article  Google Scholar 

  35. H. Cui, B. Li, Z. Li, X. Li, S. Xu, Appl. Surf. Sci. 455, 831 (2018)

    Article  CAS  Google Scholar 

  36. A.H. Qusti, A.Y.S. Malkhasian, M. Abdel Salam, J. Mol. Liq. 255, 364 (2018)

    Article  CAS  Google Scholar 

  37. Y. Chen, B. Zhai, Y. Liang, Y. Li, J. Li, J. Solid State Chem. 274, 32 (2019)

    Article  CAS  Google Scholar 

  38. B.N. Patra, D. Majhi, J. Phys. Chem. B 119, 8154 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Centre (No. AR110908). The author thanks Prof. Zahra Saleh, Central Laboratories Network and The Centers of Excellence, NRC, for providing instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H. Ternary system from mesoporous CdS–ZnS modified with polyaniline for removal of cationic and anionic dyes. Res Chem Intermed 46, 571–592 (2020). https://doi.org/10.1007/s11164-019-03968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03968-0

Keywords

Navigation