Skip to main content
Log in

Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To explore the potential impacts of nanoscale zero-valent iron (nZVI) particles on nitrite accumulation performance of nitritation granular sludge (NGS), two types of NGS (NGSA and NGSH) with different spatial morphologies were employed to exposure under a wide dosage of nZVI in batch tests. The biosorption behavior of nZVI was also investigated by determining adsorption isotherm. Results showed that the ecotoxic effect of nZVI was ascribed to its fast adsorption to the granules. Although NGSA and NGSH shared a similar bacterial community structure dominated by genus Nitrosomonas based on high-throughput pyrosequencing, the compact and small granules of NGSA showed a stronger tolerance for nZVI exposure than NGSH with loose spatial structure. The 50% inhibition dosage of nZVI for ammonium-oxidizing bacteria activity in NGSA and NGSH was 88.5 and 21.3 mg g−1 VSS, respectively. As a crucial self-protection mechanism of microbes, the secretion of extracellular polymeric substances was dramatically enhanced with nZVI exposure at a low dosage, and a simultaneous decrease in both extracellular polymeric substances contents and ammonium-oxidizing activity of NGS was observed with a high accumulation of total iron in sludge phase. Overall, the results suggested that ammonium-oxidizing bacteria in granules were susceptible to inhibition by nZVI exposure, and release of engineered nanoparticles into wastewater treatment system increased the risk of failure in autotrophic nitrogen removal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Waste Manag. 30, 3 (2010)

    Article  Google Scholar 

  2. R.A. Crane, T.B. Scott, J. Hazard. Mater. 211–212, 211 (2012)

    Google Scholar 

  3. M. Emadi, M. Savasari, M.A. Bahmanyar, P. Biparva, Res. Chem. Intermed. 45, 4261 (2016)

    Article  Google Scholar 

  4. F.L. Fu, D.D. Dionysiou, L. Hong, J. Hazard. Mater. 267, 194 (2014)

    Article  CAS  Google Scholar 

  5. D.B. Wang, Y.G. Chen, Crit. Rev. Biotechnol. 36, 816 (2016)

    Article  CAS  Google Scholar 

  6. J.W. Chen, Z.M. Xiu, G.V. Lowry, P.J.J. Alvarez, Water Res. 45, 1995 (2011)

    Article  CAS  Google Scholar 

  7. D.L. Wu, Y.H. Shen, A.Q. Ding, M.Y. Qiu, Q. Yang, S.S. Zheng, Environ. Technol. 34, 2663 (2013)

    Article  CAS  Google Scholar 

  8. Y.J. Ma, J.W. Metch, E.P. Vejerano, I.J. Miller, E.C. Leon, L.C. Marr, P.J. Vikesland, A. Pruden, Water Res. 68, 87 (2015)

    Article  CAS  Google Scholar 

  9. Z.H. Liang, A. Das, Z.Q. Hu, Water Res. 44, 5432 (2010)

    Article  CAS  Google Scholar 

  10. Y.G. Chen, Y.L. Su, X. Zheng, H. Chen, H. Yang, Water Res. 46, 4379 (2012)

    Article  CAS  Google Scholar 

  11. S. Matsumoto, M. Katoku, G. Saeki, A. Terada, Y. Aoi, S. Tsuneda, P. Cristian, M.V. Loosdrecht, Environ. Microbiol. 12, 192 (2010)

    Article  CAS  Google Scholar 

  12. Y.H. Liang, D. Li, H.P. Zeng, C.D. Zhang, J. Zhang, Bioresour. Technol. 196, 741 (2015)

    Article  CAS  Google Scholar 

  13. J.F. Wang, Z.Y. Zhang, F.Y. Qian, Y.L. Shen, Z.K. Qi, X.Q. Ji, E.M.L. Kajamisso, Bioresour. Technol. 256, 170 (2018)

    Article  CAS  Google Scholar 

  14. J.F. Wang, F.Y. Qian, X.P. Liu, W.R. Liu, S.Y. Wang, Y.L. Shen, Appl. Microbiol. Biotechnol. 100, 9381 (2016)

    Article  CAS  Google Scholar 

  15. A.D. Eaton, A.E. Greenberg, L.S. Clesceri, M.A.H. Franson, Am. J. Public Health 56, 387 (1998)

    Google Scholar 

  16. C.Y. Wu, Y.Z. Peng, S.Y. Wang, Y. Ma, Water Res. 44, 807 (2010)

    Article  CAS  Google Scholar 

  17. J.P. Bassin, R. Kleerebezem, M. Dezotti, M.C.M.V. Loosdrecht, Chemosphere 89, 1161 (2012)

    Article  CAS  Google Scholar 

  18. S.S. Adav, D.J. Lee, J. Hazard. Mater. 154, 1120 (2008)

    Article  CAS  Google Scholar 

  19. F. Qian, X. Chen, J. Wang, Y. Shen, J. Gao, J. Mei, J. Microbiol. Biotechnol. 27, 1798 (2017)

    Article  CAS  Google Scholar 

  20. S.J. You, Y.P. Tsai, R.Y. Huang, J. Hazard. Mater. 165, 987 (2009)

    Article  CAS  Google Scholar 

  21. A. Hammaini, F. González, A. Ballester, M.L. Blázquez, J.A. Muñoz, J. Environ. Manag. 84, 419 (2007)

    Article  CAS  Google Scholar 

  22. I. Cydzik-Kwiatkowska, Wojnowska-Baryła. Folia Microbiol. 56, 201 (2011)

    Article  CAS  Google Scholar 

  23. R.M.L.D. Rathnayake, M. Oshiki, S. Ishii, T. Segawa, H. Satoh, S. Okabe, Bioresour. Technol. 197, 15 (2015)

    Article  CAS  Google Scholar 

  24. J.S. Lu, T.T. Lian, J.F. Su, Res. Chem. Intermed. 44, 6011 (2018)

    Article  CAS  Google Scholar 

  25. L.G. Cullen, E.L. Tilston, G.R. Mitchell, C.D. Collins, L.J. Shaw, Chemosphere 82, 1675 (2011)

    Article  CAS  Google Scholar 

  26. Z.Q. Hu, K. Chandran, D. Grasso, B.F. Smets, Water Res. 38, 3949 (2004)

    Article  CAS  Google Scholar 

  27. M.A. Kiser, H. Ryu, H. Jang, K. Hristovski, P. Westerhoff, Water Res. 44, 4105 (2010)

    Article  CAS  Google Scholar 

  28. I.D.S. Henriques, N.G. Love, Water Res. 41, 4177 (2007)

    Article  CAS  Google Scholar 

  29. F. Gómez-Rivera, J.A. Field, D. Brown, R. Sierra-Alvarez, Bioresour. Technol. 108, 300 (2012)

    Article  Google Scholar 

  30. S.S. Adav, D.J. Lee, K.Y. Show, J.H. Tay, Biotechnol. Adv. 26, 411 (2008)

    Article  CAS  Google Scholar 

  31. T.T. More, J.S.S. Yadav, S. Yan, R.D. Tyagi, R.Y. Surampalli, J. Environ. Manag. 144, 1 (2014)

    Article  CAS  Google Scholar 

  32. N. Joshi, B.T. Ngwenya, C.E. French, J. Hazard. Mater. 241–242, 363 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Science and Technology Projects for water pollution control and treatment of China (2017ZX07205002), the National Natural Science Foundation of China (51608341), the Natural Science Foundation of Jiangsu Province, China (BK20150284). Authors also acknowledge the support from the Qinglan Project for Jiangsu Colleges and Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyue Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sheng, J., Qian, F. et al. Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior. Res Chem Intermed 46, 769–781 (2020). https://doi.org/10.1007/s11164-019-03989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03989-9

Keywords

Navigation