Skip to main content

Advertisement

Log in

A convenient approach directly from triglycerides toward the producing of thia-wax esters as bio- and chemical raw materials

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Practical and efficient method has been developed for the preparation of novel sulfur-containing esters from triglycerides as potential important industrial and biomaterials. The fact that these unusual compounds are not found in natural sources encourages both academic and industrial communities for their preparation with suitable chemical or enzymatic processes. In general, enzymatic processes requiring more laborious synthesis and product isolation stages. On the other hand, known chemical methods for the preparation of normal wax esters have several drawbacks cited in the present work. Therefore, the chemical method developed in the present study is environmentally benign and suitable for both small- and large-scale syntheses of normal and unusual wax esters. For this purpose, triglycerides were taken to the transesterification reaction in a solvent-free medium with synthetic thia-long-chain alcohols at a ratio of (1:3). In order to catalyze the reaction, newly synthesized bis-imidazole-based metal-free acidic ionic liquid was used and the thia-mono esters were obtained in a fairly short period of time (6 h) with good to excellent yields. The catalyst reuse and large-scale synthesis studies were also carried out.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.M. Alvarez, in Handbook of Hydrocarbon and Lipid Microbiology, ed. By K.N. Timmis (in-chief), T.J. McGenity, J.R. Van der Meer, V. De Lorenzo (Springer, Berlin, 2010) p. 2995

  2. B.W. Darvell, Materials Science for Dentistry, 9th edn. (Woodhead Publishing, Cambridge, 2009), p. 390

    Google Scholar 

  3. P. Wu, H.J. Grav, R. Horn, J. Bremer, Biochem. Pharmacol. 51, 751 (1996)

    CAS  PubMed  Google Scholar 

  4. M.S.F.L.K. Jie, M.S.K.S. Rahmatullah, J. Am. Oil Chem. Soc. 72, 1381 (1995)

  5. S. Skrede, H.N. Sørensen, L.N. Larsen, H.H. Steineger, K. Høvik, Ø.S. Spydevold, R. Horn, J. Bremer, Biochim. Biophys. Acta, Lipids Lipid Metab. 1344 115 (1997)

  6. M. Nerantzaki, K.V. Adam, I. Koliakou, E. Skoufa, A. Avgeropoulos, G.Z. Papageorgiou, D. Bikiaris, Macromol. Chem. Phys. 218, 1700305 (2017)

    Google Scholar 

  7. M. Desroches, S. Caillol, V. Lapinte, R. Auvergne, B. Boutevin, Macromolecules 44, 2489 (2011)

    CAS  Google Scholar 

  8. J. Skorve, A.C. Rustan, R.K. Berge, Lipids 30, 987 (1995)

    CAS  PubMed  Google Scholar 

  9. D.K. Asiedu, L. Frøyland, H. Vaagenes, Ø. Lie, A. Demoz, R.K. Berge, Biochim. Biophys. Acta, Lipids Lipid Metab. 1300, 86 (1996)

  10. K.J. Tronstad, Ø. Bruserud, K. Berge, R.K. Berge, Leukemia 16, 2292 (2002)

    CAS  PubMed  Google Scholar 

  11. M.K. Pandey, A. Bansal, T.R. DeGrado, Heart Metab. 51, 15 (2011)

    Google Scholar 

  12. A. Aarsland, N. Aarsaether, J. Bremer, R.K. Berge, J. Lipid Res. 30, 1711 (1989)

    CAS  PubMed  Google Scholar 

  13. H. Wang, X. Liu, Y. Wang, Y. Chen, Q. Jin, J. Ji, J. Mater. Chem. B 3, 3297 (2015)

    CAS  Google Scholar 

  14. U.S. Government. Code of Federal Regulations, vol. 3 Part 182, Section 182.3280, Code No. 21CFR182.3280 (2004)

  15. A.O. Patil, S. Bodige, M.P. Hagemeister, U.S. Patent 0275129A1 (2015)

  16. T. Noda, A. Nagata, Y. Abe, T. Sunada, JP Patent 2017081833A (2017)

  17. M. Dexter, D. Steinberg, U.S. Patent 3758549A (1973)

  18. J.M. Herdan, G. Valeanu, A. Popescu, J. Synth. Lubr. 12, 91 (1995)

    CAS  Google Scholar 

  19. K. Weissermel, H.D. Hermann, C. Heuck, C. Kuellmar, O. Mauz, M. Reiber, J. Winter, DE Patent 1117868 (1961)

  20. H.Z. Lecher, N.J. Plainfield, H. Braus, U.S. Patent 3,222,318 (1965)

  21. G. Michels, U. Jansen, F. Eisentrager, S. Kaminsky, DE Patent WO2017/211783A1 (2017)

  22. W. Hiroaki, M. Harada, K. Nose, JP Patent WO2012049814A1 (2012)

  23. A.S. Touchy, K. Kon, W. Onodera, K. Shimizu, Adv. Synth. Catal. 357, 1499 (2015)

    CAS  Google Scholar 

  24. K. Ishihara, M. Nakayama, S. Ohara, H. Yamamoto, Tetrahedron 5, 8179 (2002)

    Google Scholar 

  25. A. Sakthivel, K. Komura, Y. Sugi, Ind. Eng. Chem. Res. 47, 2538 (2008)

    CAS  Google Scholar 

  26. F. Liu, K. Huang, S. Ding, S. Dai, J. Mater. Chem. A 4, 14567 (2016)

    CAS  Google Scholar 

  27. Q. Wu, F. Liu, X. Yi, Y. Zoud, L. Jiang, Green Chem. 20, 1020 (2018)

    CAS  Google Scholar 

  28. F. Liu, K. Huang, Q. Wu, S. Dai, Adv. Mater. 29, 1700445 (2017)

    Google Scholar 

  29. F. Liu, K. Huang, A. Zheng, F.S. Xiao, S. Dai, ACS Catal. 8, 372 (2018)

    CAS  Google Scholar 

  30. F. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, S. Dai, Green Chem. 18, 6536 (2016)

    CAS  Google Scholar 

  31. N. Weber, E. Klein, K. Vosmann, J. Agric. Food Chem. 54, 2957 (2003)

    Google Scholar 

  32. N. Ieda, K. Mantri, Y. Miyata, A. Ozaki, K. Komura, Y. Sugi, Ind. Eng. Chem. Res. 47, 8631 (2008)

    CAS  Google Scholar 

  33. H. Chen, X. Xu, L. Liu, G. Tang, Y. Zhao, RSC Adv. 3, 16247 (2013)

    CAS  Google Scholar 

  34. K. Mantri, K. Komura, Y. Sugi, Synthesis 12, 1939 (2005)

    Google Scholar 

  35. A.C. Cole, J.L. Jenson, I. Ntai, K.L.T. Tran, K.J. Wearver, D.C. Forbes, J.H. Davis, J. Am. Chem. Soc. 124, 5962 (2002)

    CAS  PubMed  Google Scholar 

  36. H.P. Zhu, F. Yang, J. Tang, M.Y. He, Green Chem. 5, 38 (2003)

    CAS  Google Scholar 

  37. J. Gui, X. Cong, D. Liu, X. Zhang, Z. Hu, Z. Sun, Catal. Commun. 5, 473 (2004)

    CAS  Google Scholar 

  38. H. Zhang, F. Xu, X. Zhou, G. Zhang, C. Wang, Green Chem. 9, 1208 (2007)

    CAS  Google Scholar 

  39. O. Kocian, K. Stransky, J. Zavada, Collect. Czechoslov. Chem. Commun. 47, 1356 (1982)

    CAS  Google Scholar 

  40. B. Boutevin, A. El Idrissi, J.P. Parkisi, Makromol. Chem. 191, 445 (1990)

    CAS  Google Scholar 

  41. M. Mansueto, C.K. Kreß, S. Laschat, Tetrahedron 70, 6258 (2014)

    CAS  Google Scholar 

  42. J. Kirres, K. Schmitt, I. Wurzbach, F. Giesselmann, S. Ludwigs, M. Ringenberg, A. Ruff, A. Baro, S. Laschat, Org. Chem. Front. 4, 790 (2017)

    CAS  Google Scholar 

  43. J.F. Xu, Y.Z. Chen, L.Z. Wu, C.H. Tung, Q.Z. Yang, Org. Lett. 15, 6148 (2013)

    CAS  PubMed  Google Scholar 

  44. R. Sheldon, Chem. Commun. 0, 2399 (2001)

  45. A.S. Amarasekara, Chem. Rev. 116, 6133 (2016)

    CAS  PubMed  Google Scholar 

  46. A. Yıldırım, S. Mudaber, S. Öztürk, Eur. J. Lipid Sci. Technol. 121, 1800303 (2019)

    Google Scholar 

  47. A. Yıldırım, K. Kıraylar, Turk. J. Chem. 43, 802 (2019)

    Google Scholar 

  48. J.L. Anderson, R. Ding, A. Ellern, D.W. Armstrong, J. Am. Chem. Soc. 127, 593 (2005)

    CAS  PubMed  Google Scholar 

  49. H. Eshghi, M. Rahimizadeh, M. Hasanpour, M. Bakavoli, Res. Chem. Intermed. 41, 4187 (2015)

    CAS  Google Scholar 

  50. MarvinSketch (Product Version: 15.6.29.0, calculation module developed by ChemAxon) (2015)

  51. S.Y. Bae, M.D. Winemiller, J. Org. Chem. 78, 6457 (2013)

    CAS  PubMed  Google Scholar 

  52. L.M. Ling, X.H. Ling, S. Ming, Y. Ling, H.S. Tong, Phosphorus. Sulfur Silicon Relat. Elem. 189, 387 (2014)

    Google Scholar 

  53. Y.C. Yang, L.L. Szafraniec, W.T. Beaudry, J.R. Ward, J. Org. Chem. 53, 3293 (1988)

    CAS  Google Scholar 

  54. P. Sun, S. Liu, Y. Zhou, S. Zhang, Z. Yao, ACS Sustainable Chem. Eng. 6, 13579 (2018)

    CAS  Google Scholar 

  55. B.J.K. Ahn, S. Kraft, X.S. Sun, J. Agric. Food Chem. 60, 2179 (2012)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bursa Uludağ University Scientific Research Projects Unit (OUAP(F)-2018/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Yıldırım.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, A., Kıraylar, K. & Öztürk, S. A convenient approach directly from triglycerides toward the producing of thia-wax esters as bio- and chemical raw materials. Res Chem Intermed 46, 215–230 (2020). https://doi.org/10.1007/s11164-019-03944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03944-8

Keywords

Navigation