Skip to main content
Log in

The Effect of Hydroxyapatite Prepared by In Situ Synthesis on the Properties of Poly(Vinyl Alcohol)/Cellulose Nanocrystals Biomaterial

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol/cellulose nanocrystals (CNC) and hydroxyapatite (HA) (PCH) were combined using an in situ method to fabricate porous scaffolds. CNC was extracted from sugarcane bagasse and the effect of HA on PVA/CNC composites was varied with 0, 0.5, 1 and 3 wt%. The scanning electron microscopy images of the PCH composites showed interior pores with pore channels, while the energy dispersive spectroscopy (EDS) results confirmed the increased HA content in the nanocomposite with a Ca/P ratio of 1.67. Porosity and the equilibrium swelling ratio were slightly affected by the HA content. The Fourier transform infrared spectra supported the EDS results by identifying significant peaks belonging to the HA curves of the PCH composites. The crystallinity revealed decreased crystal regions at higher HA content, whereas the mechanical behavior showed the improvement at 0.5 wt% of HA. Cytotoxicity with L929 demonstrated the compatibility of the PCH composites, with 85 ± 0.92% cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wolfe SP, Sell AS, Bowlin LG (2011) Natural and synthetic scaffolds. In Pallua N, Suscheck CV (eds) Tissue engineering. Springer, Berlin, pp 41–67

    Google Scholar 

  2. Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Biomacromolecules 10:1575–1583

    CAS  PubMed  Google Scholar 

  3. Deville S (2010) Materials 3:1913–1927

    CAS  PubMed Central  Google Scholar 

  4. O'Brien FJ (2011) Mater Today 14:88–95

    CAS  Google Scholar 

  5. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413–3431

    CAS  PubMed  Google Scholar 

  6. Li R, Chen K, Li G, Han G, Yu S, Yao J, Cai Y (2016) J Mol Struct 1120:34–41

    CAS  Google Scholar 

  7. Ahn S-J, Shin YM, Kim SE, Jeong SI, Jeong J-O, Park J-S, Gwon H-J, Seo DE, Nho Y-C, Kang SS, Kim C-Y, Huh J-B, Lim Y-M (2015) Biotechnol Bioprocess Eng 20:948–955

    CAS  Google Scholar 

  8. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Mater Sci Eng C 49:463–471

    CAS  Google Scholar 

  9. Kokubo T, Takadama H (2006) Biomaterials 27:2907–2915

    CAS  PubMed  Google Scholar 

  10. Bhattacharya D, Germinario LT, Winter WT (2008) Carbohydr Polym 73:371–377

    CAS  Google Scholar 

  11. Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291–1299

    CAS  Google Scholar 

  12. Teixeira EDM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Ind Crops Prod 33:63–66

    Google Scholar 

  13. Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Bioresour Technol 146:82–88

    CAS  PubMed  Google Scholar 

  14. Chivrac F, Pollet E, Avérous L (2009) Mater Sci Eng R 67:1–17

    Google Scholar 

  15. Lin N, Dufresne A (2014) Eur Polym J 59:302–325

    CAS  Google Scholar 

  16. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Dent Mater 26:471–482

    CAS  PubMed  Google Scholar 

  17. Kalpana SK, Dinesh RK, Rajalaxmi D (2008) Biomed Mater 3:034122

    Google Scholar 

  18. Kawai N, Niwa S, Sato M, Sato Y, Suwa Y, Ichihara I (1997) J Biomed Mater Res 37:1–8

    CAS  PubMed  Google Scholar 

  19. Zhao J, Guo LY, Yang XB, Weng J (2008) Appl Surf Sci 255:2942–2946

    CAS  Google Scholar 

  20. Yusong P, Dangsheng X, Xiaolin C (2007) J Mater Sci 42:5129–5134

    Google Scholar 

  21. Sun T, Khan TH, Sultana N (2014) J Nanomater 2014:1–8

    Google Scholar 

  22. Niamsap T, Lam NT, Sukyai P (2019) Carbohydr Polym 205:159–166

    CAS  PubMed  Google Scholar 

  23. Deng X, Hao J, Wang C (2001) Biomaterials 22:2867–2873

    CAS  PubMed  Google Scholar 

  24. Ishikawa M, Oaki Y, Tanaka Y, Kakisawa H, Salazar-Alvarez G, Imai H (2015) J Mater Chem B 3:5858–5863

    CAS  Google Scholar 

  25. Mandal A, Chakrabarty D (2014) J Ind Eng Chem 20:462–473

    CAS  Google Scholar 

  26. Hassan CM, Peppas NA (2000) Macromolecules 33:2472–2479

    CAS  Google Scholar 

  27. Kanimozhi K, KhaleelBasha S, SuganthaKumari V (2016) Mater Sci Eng C 61:484–491

    CAS  Google Scholar 

  28. Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Ind Crops Prod 100:183–197

    CAS  Google Scholar 

  29. Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Sugar Technol 13:1–14

    Google Scholar 

  30. Zhou YM (2012) Express Polym Lett 6:794–804

    CAS  Google Scholar 

  31. Gonzalez JS, Luduena LN, Ponce A, Alvarez VA (2014) Mater Sci Eng C 34:54–61

    CAS  Google Scholar 

  32. Hassan CM, Peppas NA (2000) Adv Polym Sci 33:37–65

    Google Scholar 

  33. Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S (2012) Colloids Surf B 100:169–176

    CAS  Google Scholar 

  34. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Cellulose 21:3409–3426

    CAS  Google Scholar 

  35. Ciolacu D, Kovac J, Kokol V (2010) Carbohydr Res 345:621–630

    CAS  PubMed  Google Scholar 

  36. Aramwit P, Siritientong KT, Srichana T (2010) Int J Biol Macromol 47:668–675

    CAS  PubMed  Google Scholar 

  37. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Carbohyd Polym 132:146–155

    CAS  Google Scholar 

  38. Kuzmenko V, Kalogeropoulos T, Thunberg J, Johannesson S, Hägg D, Enoksson P, Gatenholm P (2016) Mater Sci Eng C 58:14–23

    CAS  Google Scholar 

  39. Ohya Y, Matsunami H, Ouchi T (2004) J Biomater Sci Polym Ed 15:111–123

    CAS  PubMed  Google Scholar 

  40. Slavutsky AM, Bertuzzi MA (2014) Carbohydr Polym 110:53–61

    CAS  PubMed  Google Scholar 

  41. Khalil HPSA, Ismail H, Rozman HD, Ahmad MN (2001) Eur Polym J 37:1037–1045

    CAS  Google Scholar 

  42. Li M, Wang LJ, Li D, Cheng YL, Adhikari B (2014) Carbohydr Polym 10:136–143

    CAS  Google Scholar 

  43. Wang W-M, Cai Z-S, Yu J-Y, Xia Z-P (2010) Fibers Polym 10:776–780

    Google Scholar 

  44. Garside P, Wyeth P (2003) Stud Conserv 48:269–275

    CAS  Google Scholar 

  45. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  46. AziziSamir MAS, Alloin F, Sanchez J-Y, Dufresne A (2004) Polymer 45:4149–4157

    CAS  Google Scholar 

  47. Alemdar A, Sain M (2008) Compos Sci Technol 68:557–565

    CAS  Google Scholar 

  48. Granja PL, Ribeiro CC, De Jéso B, Baquey C, Barbosa MA (2001) J Mater Sci 12:785–791

    CAS  Google Scholar 

  49. Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Powder Technol 203:315–321

    CAS  Google Scholar 

  50. Huang C, Hao N, Bhagia S, Li M, Meng X, Pu Y, Yong Q, Ragauskas AJ (2018) Materialia 4:237–246

    Google Scholar 

  51. Huang C, Bhagia S, Hao N, Meng X, Liang L, Yong Q, Ragauskas AJ (2019) RSC Adv 9:5786–5793

    CAS  Google Scholar 

  52. Semdé R, Gondi RFG, Sombié BC, Yaméogo BGJ, Ouédraogo M (2012) J Adv Pharm Technol Res 3:100–105

    PubMed  PubMed Central  Google Scholar 

  53. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Carbohydr Polym 80:852–859

    CAS  Google Scholar 

  54. Badr Y, Mahmoud MA (2006) J Appl Polym Sci 99:3608–3614

    CAS  Google Scholar 

  55. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Biomacromolecules 11:674–681

    CAS  PubMed  Google Scholar 

  56. Zhai Y, Cui FZ, Wang Y (2005) Curr Appl Phys 5:429–432

    Google Scholar 

  57. Chen X, Yu J, Zhang Z, Lu C (2011) Carbohydr Polym 85:245–250

    CAS  Google Scholar 

  58. Zhang CY, Lu H, Zhuang Z, Wang XP, Fang QF (2010) J Mater Sci Mater Med 21:3077–3083

    CAS  PubMed  Google Scholar 

  59. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Carbohydr Polym 91:7–13

    CAS  PubMed  Google Scholar 

  60. Fenglan X, Yubao L, Xuejiang W, Jie W, Aiping Y (2004) J Mater Sci 39:5669–5672

    Google Scholar 

  61. Dorozhkin SV (2010) Acta Biomater 6:715–734

    CAS  PubMed  Google Scholar 

  62. Killeen D, Frydrych M, Chen B (2012) Mater Sci Eng C 32:749–757

    CAS  Google Scholar 

  63. Costa HS, Mansur AAP, Barbosa-Stancioli EF, Pereira MM, Mansur HS (2007) J Mater Sci 587:510–524

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand. The authors are grateful to the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok Thailand for providing all laboratory equipment.

Funding

This study was funded by Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakit Sukyai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyasiri, P., Lam, N.T. & Sukyai, P. The Effect of Hydroxyapatite Prepared by In Situ Synthesis on the Properties of Poly(Vinyl Alcohol)/Cellulose Nanocrystals Biomaterial. J Polym Environ 28, 141–151 (2020). https://doi.org/10.1007/s10924-019-01599-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01599-5

Keywords

Navigation