Skip to main content

Advertisement

Log in

Arterial spin labeling imaging correlates with the angiographic and clinical vascularity of vestibular schwannomas

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Hypervascular vestibular schwannomas (HVSs) are a type of the vestibular schwannomas (VSs) that are extremely difficult to remove. We examined whether HVSs can be predicted by using arterial spin labeling (ASL) imaging.

Methods

A total of 103 patients with VSs underwent ASL imaging and digital subtraction angiography (DSA) before surgery. Regional cerebral blood flow (CBF) of gray matter and regional tumor blood flow (TBF) were calculated from ASL imaging, and we defined the ratio of TBF to CBF as the relative TBF (rTBF = TBF/CBF). Angiographic vascularity was evaluated by DSA, and clinical vascularity was evaluated by the degree of intraoperative tumor bleeding. Based on the angiographic and clinical vascularity, the VSs were divided into two categories: HVS and non-HVS. We compared rTBF with angiographic and clinical vascularities, retrospectively.

Results

The mean rTBFs of angiographic non-HVSs and HVSs were 1.29 and 2.58, respectively (p < 0.0001). At a cutoff value of 1.55, the sensitivity and specificity were 93.9% and 72.9%, respectively. The mean rTBFs of clinical non-HVS and HVSs were 1.45 and 2.22, respectively (p = 0.0002). At a cutoff value of 1.55, the sensitivity and specificity were 79.4% and 66.7%, respectively.

Conclusion

The rTBF calculated from ASL imaging correlates well with tumor vascularity and may be useful for predicting HVSs before surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Teranishi Y, Kohno M, Sora S, Sato H, Nagata O (2018) Hypervascular vestibular schwannomas: clinical characteristics, angiographical classification, and surgical considerations. Oper Neurosurg 15:251–261. https://doi.org/10.1093/ons/opx246

    Article  Google Scholar 

  2. Abe T, Izumiyama H, Imaizumi Y, Kobayashi S, Shimazu M, Sasaki K, Matsumoto K, Kushima M (2001) Staged resection of large hypervascular vestibular schwannomas in young adults. Skull Base 11:199–206

    Article  CAS  Google Scholar 

  3. Allcutt DA, Hoffman HJ, Isla A, Becker LE, Humphreys RP (1991) Acoustic schwannomas in children. Neurosurgery 29:14–18. https://doi.org/10.1097/00006123-199107000-00003

    Article  CAS  PubMed  Google Scholar 

  4. Lemay DR, Sun JK, Fishback D, Locke GE, Giannotta SL (1998) Hypervascular acoustic neuroma. Neurol Res 20:748–750

    Article  CAS  Google Scholar 

  5. Ikeda K, Ito H, Kashihara K, Fujihara H, Yamamoto S (1988) Effective preoperative irradiation of highly vascular cerebellopontine angle neurinomas. Neurosurgery 22:566–573. https://doi.org/10.1227/00006123-198803000-00022

    Article  CAS  PubMed  Google Scholar 

  6. Yamakami I, Kobayashi E, Iwadate Y, Saeki N, Yamaura A (2002) Hypervascular vestibular schwannomas. Surg Neurol 57:105–112. https://doi.org/10.1016/s0090-3019(01)00664-4

    Article  PubMed  Google Scholar 

  7. Falk Delgado A, De Luca F, van Westen D, Falk Delgado A (2018) Arterial spin labeling MR imaging for differentiation between high- and low-grade glioma-a meta-analysis. Neuro-Oncology 20:1450–1461. https://doi.org/10.1093/neuonc/noy095

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kimura H, Takeuchi H, Koshimoto Y, Arishima H, Uematsu H, Kawamura Y, Kubota T, Itoh H (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. Am J Neuroradiol 27:85–93

    CAS  PubMed  Google Scholar 

  9. Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2018) Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 60:169–177. https://doi.org/10.1007/s00234-017-1955-3

    Article  PubMed  Google Scholar 

  10. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532. https://doi.org/10.1148/radiol.2282020409

    Article  PubMed  Google Scholar 

  11. Yoo RE, Yun TJ, Cho YD, Rhim JH, Kang KM, Choi SH, Kim JH, Kim JE, Kang HS, Sohn CH, Park SW, Han MH (2016) Utility of arterial spin labeling perfusion magnetic resonance imaging in prediction of angiographic vascularity of meningiomas. J Neurosurg 125:536–543. https://doi.org/10.3171/2015.8.JNS151211

    Article  CAS  PubMed  Google Scholar 

  12. Mayercik V, Ma M, Holdsworth S, Heit J, Iv M (2019) Arterial spin-labeling MRI identifies hypervacular meningiomas. Am J Roentgenol 213:1–5. https://doi.org/10.2214/AJR.18.21026

    Article  Google Scholar 

  13. Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW (2012) Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 43:1843–1848. https://doi.org/10.1161/STROKEAHA.111.639773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolf RL, Wang J, Wang S, Melhem ER, O’Rourke DM, Judy KD et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 tesla. J Magn Reson Imaging 22:475–482. https://doi.org/10.1002/jmri.20415

    Article  PubMed  Google Scholar 

  15. Lawrence KS, Frank JA, McLaughlin AC (2000) Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 44:440–449. https://doi.org/10.1002/1522-2594(200009)44:3<440::AID-MRM15>3.0.CO;2-6

    Article  Google Scholar 

  16. Koizumi S, Sakai N, Kawaji H, Takehara Y, Yamashita S, Namba H et al (2015) Pseudo-continuous arterial spin labeling reflects vascular density and differentiates angiomatous meningiomas from non-angiomatous meningiomas. J Neuro-Oncol 121:549–556. https://doi.org/10.1007/s11060-014-1666-0

    Article  Google Scholar 

  17. Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254. https://doi.org/10.1002/(sici)1522-2594(199906)41:6%3C1246::aid-mrm22%3E3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  18. Amano M, Kohno M, Nagata O, Taniguchi M, Sora S, Sato H (2011) Intraoperative continuous monitoring of evoked facial nerve electromyograms in acoustic neuroma surgery. Acta Neurochir 153:1059–1067. https://doi.org/10.1007/s00701-010-0937-6

    Article  PubMed  Google Scholar 

  19. Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11. https://doi.org/10.2466/pr0.1966.19.1.3

    Article  CAS  PubMed  Google Scholar 

  20. Fleiss JL (1981) Statistical methods for rates and proportions. 2nd ed. Wiley, New York, pp 38–46

    Google Scholar 

  21. Caye-Thomasen P, Baandrup L, Jacobsen GK, Thomsen J, Stangerup SE (2003) Immunohistochemical demonstration of vascular endothelial growth factor in vestibular schwannomas correlates to tumor growth rate. Laryngoscope 113:2129–2134. https://doi.org/10.1097/00005537-200312000-00014

    Article  CAS  PubMed  Google Scholar 

  22. Caye-Thomasen P, Werther K, Nalla A, Bog-Hansen TC, Nielsen HJ, Stangerup SE et al (2005) VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol 26:98–101

    Article  Google Scholar 

  23. Koutsimpelas D, Bjelopavlovic M, Yetis R, Frauenknecht K, Adryan B, Schmidtmann I (2012) The VEGF/VEGF-R axis in sporadic vestibular schwannomas correlates with irradiation and disease recurrence. ORL J Otorhinolaryngol Relat Spec 74:330–338. https://doi.org/10.1159/000346238

    Article  CAS  PubMed  Google Scholar 

  24. Koutsimpelas D, Stripf T, Heinrich UR, Mann WJ, Brieger J (2007) Expression of vascular endothelial growth factor and basic fibroblast growth factor in sporadic vestibular schwannomas correlates to growth characteristics. Otol Neurotol 28:1094–1099. https://doi.org/10.1097/MAO.0b013e31814b2787

    Article  PubMed  Google Scholar 

  25. Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Honda H (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. Am J Neuroradiol 29:688–693. https://doi.org/10.3174/ajnr.A0903

    Article  CAS  PubMed  Google Scholar 

  26. Sakai N, Koizumi S, Yamashita S, Takehara Y, Sakahara H, Namba H (2013) Arterial spin-labeled perfusion imaging reflects vascular density in nonfunctioning pituitary macroadenomas. Am J Neuroradiol 34:2139–2143. https://doi.org/10.3174/ajnr.A3564

    Article  CAS  PubMed  Google Scholar 

  27. Kikuchi K, Hiwatashi A, Togao O, Yamashita K, Yoshimoto K, Mizoguchi M, Suzuki SO, Iwaki T, Suzuki Y, Honda H (2017) Correlation between arterial spin-labeling perfusion and histopathological vascular density of pediatric intracranial tumors. J Neuro-Oncol 135:561–569. https://doi.org/10.1007/s11060-017-2604-8

    Article  Google Scholar 

  28. Weber MA, Zoubaa S, Schlieter M, Juttler E, Huttner HB, Geletneky K et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906. https://doi.org/10.1212/01.wnl.0000219767.49705.9c

    Article  CAS  PubMed  Google Scholar 

  29. Rushworth RG, Sorby WA, Smith SF (1984) Acoustic neuroma in a child treated with the aid of preoperative arterial embolization. Case report. J Neurosurg 61:396–398. https://doi.org/10.3171/jns.1984.61.2.0396

    Article  CAS  PubMed  Google Scholar 

  30. Shuto T, Inomori S, Matsunaga S, Fujino H (2008) Microsurgery for vestibular schwannoma after gamma knife radiosurgery. Acta Neurochir (Wien) 150:229–234. https://doi.org/10.1007/s00701-007-1486-5

    Article  CAS  Google Scholar 

  31. Kai Y, Hamada JI, Morioka M, Yano S, Nakamura H, Makino K (2006) Clinical evaluation of cellulose porous beads for the therapeutic embolization of meningiomas. Am J Neuroradiol 27:1146–1150

    CAS  PubMed  Google Scholar 

  32. Lee CC, Wu HM, Chung WY, Chen CJ, Pan DH, Hsu SP (2014) Microsurgery for vestibular schwannoma after gamma knife surgery: challenges and treatment strategies. J Neurosurg 121(Suppl):150–159. https://doi.org/10.3171/2014.8.GKS141312

    Article  PubMed  Google Scholar 

  33. Pollock BE, Lunsford LD, Kondziolka D, Sekula R, Subach BR, Foote RL (1998) Vestibular schwannoma management: Part II. Failed radiosurgery and the role of delayed microsurgery. J Neurosurg 89:949–955. https://doi.org/10.3171/jns.1998.89.6.0949

    Article  CAS  PubMed  Google Scholar 

  34. Bendszus M, Warmuth-Metz M, Klein R, Bartsch AJ, Krone A, Tonn JC, Solymosi L (2002) Sequential MRI and MR spectroscopy in embolized meningiomas: correlation with surgical and histopathological findings. Neuroradiology 44:77–82. https://doi.org/10.1007/s002340100660

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka Y, Hashimoto T, Watanabe D, Okada H, Akimoto J, Kohno M (2018) Post-embolization neurological syndrome after embolization for intracranial and skull base tumors: transient exacerbation of neurological symptoms with inflammatory responses. Neuroradiology 60:843–851. https://doi.org/10.1007/s00234-018-2047-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

This study did not receiving any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiro Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The institutional review board of our hospital approved this retrospective study.

For this type of study, formal consent was not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Kohno, M., Hashimoto, T. et al. Arterial spin labeling imaging correlates with the angiographic and clinical vascularity of vestibular schwannomas. Neuroradiology 62, 463–471 (2020). https://doi.org/10.1007/s00234-019-02358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02358-y

Keywords

Navigation